(2007•武漢)康樂(lè)公司在A、B兩地分別有同型號(hào)的機(jī)器17臺(tái)和15臺(tái),現(xiàn)要運(yùn)往甲地18臺(tái),乙地14臺(tái).從A、B兩地運(yùn)往甲、乙兩地的費(fèi)用如下表:
甲地(元/臺(tái))乙地(元/臺(tái))
A地600500
B地400800
(1)如果從A地運(yùn)往甲地x臺(tái),求完成以上調(diào)運(yùn)所需總費(fèi)用y(元)與x(臺(tái))的函數(shù)關(guān)系式;
(2)若康樂(lè)公司請(qǐng)你設(shè)計(jì)一種最佳調(diào)運(yùn)方案,使總的費(fèi)用最少,該公司完成以上調(diào)運(yùn)方案至少需要多少費(fèi)用?為什么?
【答案】分析:(1)分別表示出從甲到A、B的調(diào)運(yùn)臺(tái)數(shù),以及從乙地到A、B兩地的調(diào)運(yùn)臺(tái)數(shù),即可得到費(fèi)用.從而列出函數(shù)解析式.
(2)由1知y=500x+13300,根據(jù)從甲到A、B的調(diào)運(yùn)臺(tái)數(shù),以及從乙地到A、B兩地的調(diào)運(yùn)臺(tái)數(shù)一定是非負(fù)數(shù),就可列出不等式方程組求出x的取值范圍.根據(jù)函數(shù)的性質(zhì)求解即可.
解答:解:(1)y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300;

(2)由(1)知:總運(yùn)費(fèi)y=500x+13300,

∴3≤x≤17,又k>0,
∴隨x的增大,y也增大.
∴當(dāng)x=3時(shí),y最小=500×3+13300=14800(元).
∴該公司完成以上調(diào)運(yùn)方案至少需要14800元運(yùn)費(fèi),最佳方案是:由A地調(diào)3臺(tái)至甲地,14臺(tái)至乙地,由B地調(diào)15臺(tái)至甲地.
點(diǎn)評(píng):運(yùn)用函數(shù)建模尋找最優(yōu)方案,幫助考生學(xué)會(huì)科學(xué)決策.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•武漢)如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過(guò)A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2007•武漢)康樂(lè)公司在A、B兩地分別有同型號(hào)的機(jī)器17臺(tái)和15臺(tái),現(xiàn)要運(yùn)往甲地18臺(tái),乙地14臺(tái).從A、B兩地運(yùn)往甲、乙兩地的費(fèi)用如下表:
甲地(元/臺(tái))乙地(元/臺(tái))
A地600500
B地400800
(1)如果從A地運(yùn)往甲地x臺(tái),求完成以上調(diào)運(yùn)所需總費(fèi)用y(元)與x(臺(tái))的函數(shù)關(guān)系式;
(2)若康樂(lè)公司請(qǐng)你設(shè)計(jì)一種最佳調(diào)運(yùn)方案,使總的費(fèi)用最少,該公司完成以上調(diào)運(yùn)方案至少需要多少費(fèi)用?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•武漢)如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過(guò)點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過(guò)A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•武漢)下列圖案是由邊長(zhǎng)為單位長(zhǎng)度的小正方形按一定的規(guī)律拼接而成.依此規(guī)律,第5個(gè)圖案中小正方形的個(gè)數(shù)為    個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案