如圖,AD和AC分別是⊙O的直徑和弦,且∠CAD=30°,OB⊥AD,交AC于點(diǎn)B,若OB=3,則BC=   
【答案】分析:連接CD;在Rt△AOB中,已知OB的長(zhǎng)和∠A的度數(shù),根據(jù)直角三角形的性質(zhì)可求得OA的長(zhǎng),也就得到了直徑AD的值,連接CD,同理可在Rt△ACD中求出AC的長(zhǎng),由BC=AC-AB即可得解.
解答:解:連接CD;
Rt△AOB中,∠A=30°,OB=3,則AB=6,OA=3;
在Rt△ACD中,∠A=30°,AD=2OA=6
則AC=cos30°×6
=×6
=9,
則BC=AC-AB=9-6=3.
故答案是:3.
點(diǎn)評(píng):此題主要考查了直角三角形的性質(zhì)和圓周角定理的應(yīng)用,難度不大.直徑所對(duì)的圓周角是直角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD是直角△ABC斜邊上的高,DE⊥DF,且DE和DF分別交AB、AC于E、F.求證:
AF
AD
=
BE
BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、附加題(一中學(xué)生必做,其他學(xué)校選做)
如圖,A、B兩點(diǎn)分別位于一個(gè)池塘的兩側(cè),池塘西邊有一座假山D,在DB的中點(diǎn)C處有一個(gè)雕塑,張倩從點(diǎn)A出發(fā),沿直線AC一直向前經(jīng)過(guò)點(diǎn)C走到點(diǎn)E,并使CE=CA,然后她測(cè)量點(diǎn)E到假山D的距離,則DE的長(zhǎng)度就是A、B兩點(diǎn)之間的距離.
(1)你能說(shuō)明張倩這樣做的根據(jù)嗎?
(2)如果張倩恰好未帶測(cè)量工具,但是知道A和假山、雕塑分別相距200米、120米,你能幫助她確定AB的長(zhǎng)度范圍嗎?
(3)在第(2)問(wèn)的啟發(fā)下,你能“已知三角形的一邊和另一邊上的中線,求第三邊的范圍嗎?”請(qǐng)你解決下列問(wèn)題:在△ABC中,AD是BC邊的中線,AD=3cm,AB=5cm,求AC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:⊙O1與⊙O2相交于點(diǎn)A、B,過(guò)點(diǎn)B作CD⊥AB,分別交⊙O1和⊙O2于點(diǎn)C、D.
(1)如圖,求證:AC是⊙O1的直徑;
(2)若AC=AD,
①如圖,連接BO2、O1O2,求證:四邊形O1C BO2是平行四邊形;
②若點(diǎn)O1在⊙O2外,延長(zhǎng)O2O1交⊙O1于點(diǎn)M,在劣弧
MB
上任取一點(diǎn)E(點(diǎn)E與點(diǎn)B不重合),EB的延長(zhǎng)線交優(yōu)弧
BDA
于點(diǎn)F,如圖所示,連接AE、AF,則AE
 
AB(請(qǐng)?jiān)跈M線上填上“≥、≤、<、>”這四個(gè)不等號(hào)中的一個(gè))并加以證明.(友情提示:結(jié)論要填在答題卡相應(yīng)的位置上)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•郴州)如圖,點(diǎn)D、E分別在線段AB,AC上,AE=AD,不添加新的線段和字母,要使△ABE≌△ACD,需添加的一個(gè)條件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只寫(xiě)一個(gè)條件即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知:如圖,AB、AC分別交圓于B、E和C、D,AT切圓于T、又AD=4,AE=3,DE=2,AT=6,求DC,BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案