【題目】已知:正方形ABCD的邊長為8,點E、F分別在AD、CD上,AE=DF=2,BE與AF相交于點G,點H為BF的中點,連接GH,則GH的長為_____.
【答案】5
【解析】
根據(jù)正方形的四條邊都相等可得AB=AD,每一個角都是直角可得∠BAE=∠D=90°;然后利用“邊角邊”證明△ABE≌△DAF得∠ABE=∠DAF,進一步得∠AGE=∠BGF=90°,從而知GH=BF,利用勾股定理求出BF的長即可得出答案.
∵四邊形ABCD為正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵點H為BF的中點,
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.
科目:初中數(shù)學 來源: 題型:
【題目】近年來隨著全國樓市的降溫,商品房的價格開始呈現(xiàn)下降趨勢,2012年某樓盤平均售價為5000元/平方米,2014年該樓盤平均售價為4050元/平方米.
(1)如果該樓盤2013年和2014年樓價平均下降率相同,求該樓價的平均下降率;
(2)按照(1)中樓價的下降速度,請你預測該樓盤2015年樓價平均是多少元/平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場第1次用600元購進2B鉛筆若干支,第2次用800元又購進該款鉛筆,但這次每支的進價是第1次進價的八折,且購進數(shù)量比第1次多了100支.
(1)求第1次每支2B鉛筆的進價;
(2)若要求這兩次購進的2B鉛筆按同一價格全部銷售完畢后獲利不低于600元,問每支2B鉛筆的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會在得知田同學患重病且家庭困難時,特向全校3000名同學發(fā)起“愛心”捐款活動,為了解捐款情況,學生會隨機調查了該校某班學生的捐款情況,并將得到的數(shù)據(jù)繪制成如下兩個統(tǒng)計圖,請根據(jù)相關信息解答下列問題.
(1)該班的總人數(shù)為______人,將條形圖補充完整;
(2)樣本數(shù)據(jù)中捐款金額的眾數(shù)______,中位數(shù)為______;
(3)根據(jù)樣本數(shù)據(jù)估計該校3000名同學中本次捐款金額不少于20元有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經(jīng)》九題古證. (以上材料來源于《古證復原的原理》、《吳文俊與中國數(shù)學》和《古代世界數(shù)學泰斗劉徽》)
請根據(jù)該圖完成這個推論的證明過程.
證明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).
易知,S△ADC=S△ABC , = , = .
可得S矩形NFGD=S矩形EBMF .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的個小球,其中紅球個,白球個.
(1)先從袋子中取出個紅球(且為正整數(shù)),再從袋子中隨機摸個小球,將“摸出白球”記為事件A,請完成下面表格:
事件 | 必然事件 | 隨機事件 |
的值 |
(2)先從袋子中取出個紅球,再放入個一樣的白球并掘勻,隨機摸出個白球的頻率在附近擺動,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分AC交AB于M,
(1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是直線外一點,在上取兩點A,B,連接AD,分別以點B,D為圓心,AD,AB的長為半徑畫弧,兩弧交于點C,連接CD,BC,則四邊形ABCD是平行四邊形,理由是:_________________________
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點A為圓心,以AD的長為半徑畫弧交邊BC于點E,連接AE;
②作∠DAE的平分線交CD于點F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com