已知:函數(shù)y=-
1
4
x2+x+a的圖象的最高點(diǎn)在x軸上.
(1)求a;
(2)如圖所示,設(shè)二次函數(shù)y=-
1
4
x2+x+a圖象與y軸的交點(diǎn)為A,頂點(diǎn)為B,P為圖象上的一點(diǎn),若以線段PB為直徑的圓與直線AB相切于點(diǎn)B,求P點(diǎn)的坐標(biāo);
(3)在(2)中,若圓與x軸另一交點(diǎn)C關(guān)于直線PB的對稱點(diǎn)為M,試探索點(diǎn)M是否在拋物線y=-
1
4
x2+x+a上?若在拋物線上,求出M點(diǎn)的坐標(biāo);若不在,請說明理由.
(1)依題意有△=1+a=0,
解得a=-1;

(2)設(shè)P為二次函數(shù)圖象上的一點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C1;
∵y=-
1
4
x2+x-1頂點(diǎn)為B(-2,0),圖象與y軸的交點(diǎn)坐標(biāo)為A(0,-1),
∵以PB為直徑的圓與直線AB相切于點(diǎn)B,
∴PB⊥AB,則∠PBC1=∠BAO
∴Rt△PC1BRt△BOA
PC1
OB
=
BC1
AO
,故PC1=2BC1,
設(shè)P點(diǎn)的坐標(biāo)為(x,y),
∵∠ABO是銳角,∠PBA是直角,
∴∠PBO是鈍角,
∴x>2
∴BC1=x-2,PC1=2x-4,
即y=4-2x,
∴P點(diǎn)的坐標(biāo)為(x,4-2x)
∵點(diǎn)P在二次函數(shù)y=-
1
4
x2+x+1的圖象上,
∴4-2x=-
1
4
x2+x-1,
解得:x1=-2,x2=10
∵x>2,
∴x=10,
∴P點(diǎn)的坐標(biāo)為:(10,-16);

(3)點(diǎn)M不在拋物線y=-
1
4
x2+x+a上,
由(2)知:C1為圓與x軸的另一交點(diǎn),連接CM,CM與直線PB的交點(diǎn)為Q,過點(diǎn)M作x軸的垂線,垂足為D,取CD的中點(diǎn)E,連接QE,則CM⊥PB,且CQ=MQ,
∴QEMD,QE=
1
2
MD,QE⊥CE
∵CM⊥PB,QE⊥CE,PC⊥x軸
∴∠QCE=∠EQB=∠CPB
∴tan∠QCE=tan∠EQB=tan∠CPB=
1
2
,
CE=2QE=2×2BE=4BE,
又∵CB=8,
故BE=
8
5
,QE=
16
5

∴Q點(diǎn)的坐標(biāo)為(
18
5
,-
16
5

可求得M點(diǎn)的坐標(biāo)為(
14
5
,-
32
5

∵-
1
4
×(
14
5
2+
14
5
-1=-
144
25
≠-
32
5
,
∴C點(diǎn)關(guān)于直線PB的對稱點(diǎn)M不在拋物線y=-
1
4
x2+x+a上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c的頂點(diǎn)為C(1,0),且與直線l:y=x+m交y軸于同一點(diǎn)B(0,1),與直線l交于另一點(diǎn)A,D為拋物線的對稱軸與直線l的交點(diǎn),P為線段AB上的一動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E.
(1)求拋物線和直線l的函數(shù)解析式,及另一交點(diǎn)A的坐標(biāo);
(2)求△ABE的最大面積是多少?
(3)問是否存在這樣的點(diǎn)P,使四邊形PECD為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連接MC,把△MBC沿x軸的負(fù)方向平移OC的長度后得到△DAO.
(1)試直接寫出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過原點(diǎn)的拋物線上,點(diǎn)P在第一象限內(nèi)的該拋物線上移動,過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連接OP.若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo);
(3)試問在(2)拋物線的對稱軸上是否存在一點(diǎn)T,使得
|TO-TB|的值最大?若存在,則求出點(diǎn)T點(diǎn)的坐標(biāo);若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+mx+n
與x軸交于不同的兩點(diǎn)A(x1,0),B(x2,0),點(diǎn)A在點(diǎn)B的左邊,拋物線與y軸交于點(diǎn)C,若A,B兩點(diǎn)位于y軸異側(cè),且tan∠CAO=tan∠BCO=
1
3
,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2(a≥1)的圖象上兩點(diǎn)A,B的橫坐標(biāo)分別為-1,2,O是坐標(biāo)原點(diǎn),如果△AOB是直角三角形,則△AOB的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知A1,A2,A3,…,A2006是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=A2005A2006=1,分別過點(diǎn)A1,A2,A3,…,A2006作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點(diǎn)P1,P2,P3,…,P2006點(diǎn),若記△OA1P1的面積為S1,過點(diǎn)P1作P1B1⊥A2P2于點(diǎn)B1,記△P1B1P2的面積為S2,過點(diǎn)P2作P2B2⊥A3P3于點(diǎn)B2,記△P2B2P3的面積為S3,…,依次進(jìn)行下去,最后記△P2005B2005P2006的面積為S2006,則S2006-S2005=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

安慶迎江區(qū)農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè),他準(zhǔn)備用40米長的木欄圍一個矩形的養(yǎng)圈,為了節(jié)約材料,同時要使矩形面積最大,他利用了自己家房屋一面長24米的墻,設(shè)計了如圖一個矩形的養(yǎng)圈.
(1)請你求出張大伯設(shè)計的矩形養(yǎng)圈的面積.
(2)請你判斷他的設(shè)計方案是否使矩形養(yǎng)圈的面積最大?如果不是最大,應(yīng)怎樣設(shè)計?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:0<a<b<c,實(shí)數(shù)x、y滿足2x+2y=a+b+c,2xy=ac,且x<y.求證:0<x<a,b<y<c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AD=12,AB=8,在線段BC上任取一點(diǎn)P,連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E.
(1)設(shè)CP=x,BE=y,試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)P在什么位置時,線段BE最長?

查看答案和解析>>

同步練習(xí)冊答案