(2012•上海)如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,點(diǎn)D在AC上,將△ADB沿直線BD翻折后,將點(diǎn)A落在點(diǎn)E處,如果AD⊥ED,那么線段DE的長(zhǎng)為
3
-1
3
-1
分析:由在Rt△ABC中,∠C=90°,∠A=30°,BC=1,利用三角函數(shù),即可求得AC的長(zhǎng),又由△ADB沿直線BD翻折后,將點(diǎn)A落在點(diǎn)E處,AD⊥ED,根據(jù)折疊的性質(zhì)與垂直的定義,即可求得∠EDB與∠CDB的度數(shù),繼而可得△BCD是等腰直角三角形,求得CD的長(zhǎng),繼而可求得答案.
解答:解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴AC=
BC
tan∠A
=
1
tan30°
=
3
,
∵將△ADB沿直線BD翻折后,將點(diǎn)A落在點(diǎn)E處,
∴∠ADB=∠EDB,DE=AD,
∵AD⊥ED,
∴∠CDE=∠ADE=90°,
∴∠EDB=∠ADB=
360°-90°
2
=135°,
∴∠CDB=∠EDB-∠CDE=135°-90°=45°,
∵∠C=90°,
∴∠CBD=∠CDB=45°,
∴CD=BC=1,
∴DE=AD=AC-CD=
3
-1.
故答案為:
3
-1.
點(diǎn)評(píng):此題考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及等腰直角三角形性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+6x+c的圖象經(jīng)過(guò)點(diǎn)A(4,0)、B(-1,0),與y軸交于點(diǎn)C,點(diǎn)D在線段OC上,OD=t,點(diǎn)E在第二象限,∠ADE=90°,tan∠DAE=
12
,EF⊥OD,垂足為F.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求線段EF、OF的長(zhǎng)(用含t的代數(shù)式表示);
(3)當(dāng)∠ECA=∠OAC時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)如圖,在Rt△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),BE⊥CD,垂足為點(diǎn)E.己知AC=15,cosA=
35

(1)求線段CD的長(zhǎng);
(2)求sin∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)如圖,已知梯形ABCD,AD∥BC,BC=2AD,如果
AD
=
a
,
AB
=
b
,那么
AC
=
2
a
+
b
2
a
+
b
(用
a
,
b
表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)如圖,在半徑為2的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.
(1)當(dāng)BC=1時(shí),求線段OD的長(zhǎng);
(2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出并求其長(zhǎng)度,如果不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案