如圖,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD與CE的交點,求證:BO=CO.

證明:∵AB=AC,
∴∠ABC=∠ACB,
∵BD⊥AC,CE⊥AB,
∴∠BDC=∠CEB=90°,
在△BCE和△CBD中,
∴△BCE≌△CBD(AAS),
∴∠BCE=∠CBD,
∴BO=CO.
分析:根據(jù)等邊對等角可得∠ABC=∠ACB,然后利用“角角邊”證明△BCE和△CBD全等,根據(jù)全等三角形對應角相等可得∠BCE=∠CBD,再利用等角對等邊即可得證.
點評:本題考查了等腰三角形的判定與性質,全等三角形的判定與性質,是基礎題,找出△BCE和△CBD全等的條件是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案