【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:∵二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),
∴根據(jù)題意,得,
解得,
∴拋物線的解析式為y=﹣x2+2x+3.
(2)
解:由y=﹣x2+2x+3得,D點(diǎn)坐標(biāo)為(1,4),
∴CD==,
BC==3,
BD==2,
∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,
∴CD2+BC2=BD2,
∴△BCD是直角三角形;
(3)
解:存在.
y=﹣x2+2x+3對稱軸為直線x=1.
①若以CD為底邊,則P1D=P1C,
設(shè)P1點(diǎn)坐標(biāo)為(x,y),根據(jù)勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,
因此2+(3﹣y)2=(x﹣1)2+(4﹣y)2,
即y=4﹣x.
又P1點(diǎn)(x,y)在拋物線上,
∴4﹣x=﹣x2+2x+3,
即x2﹣3x+1=0,
解得x1=,x2=<1,應(yīng)舍去,
∴x=,
∴y=4﹣x=,
即點(diǎn)P1坐標(biāo)為(,).
②若以CD為一腰,
∵點(diǎn)P2在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點(diǎn)P2與點(diǎn)C關(guān)于直線x=1對稱,
此時點(diǎn)P2坐標(biāo)為(2,3).
∴符合條件的點(diǎn)P坐標(biāo)為(,)或(2,3).
【解析】(1)將A(﹣1,0)、B(3,0)代入二次函數(shù)y=ax2+bx﹣3a求得a、b的值即可確定二次函數(shù)的解析式;
(2)分別求得線BC、CD、BD的長,利用勾股定理的逆定理進(jìn)行判定即可;
(3)分以CD為底和以CD為腰兩種情況討論.運(yùn)用兩點(diǎn)間距離公式建立起P點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再結(jié)合拋物線解析式即可求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點(diǎn),過點(diǎn)A的直線y=﹣x+4交拋物線于點(diǎn)C.
(1)求此拋物線的解析式;
(2)在直線AC上有一動點(diǎn)E,當(dāng)點(diǎn)E在某個位置時,使△BDE的周長最小,求此時E點(diǎn)坐標(biāo);
(3)當(dāng)動點(diǎn)E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運(yùn)動時,是否存在使△BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時發(fā)現(xiàn)忘帶手機(jī),此時離上班時間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機(jī)、啟動電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請你判斷李老師能否按時上班,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張華在一次數(shù)學(xué)活動中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導(dǎo)出“式子x+ (x>0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當(dāng)矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導(dǎo),你求得式子 (x>0)的最小值是( )
A.2
B.1
C.6
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題
(1)計算:( ﹣2)0+(﹣1)2014+ ﹣sin45°;
(2)先化簡,再求值:(a2b+ab)÷ ,其中a= +1,b= ﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)成為現(xiàn)代人的時尚,某市有關(guān)部門統(tǒng)計了最近6個月到圖書館的讀者的職業(yè)分布情況,并做了下列兩個不完整的統(tǒng)計圖.
(1)在統(tǒng)計的這段時間內(nèi),共有萬人次到圖書館閱讀,其中商人占百分比為%;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點(diǎn)F,連接CF,則下列結(jié)論:①BF=AC; ②∠FCD=45°; ③若BF=2EC,則△FDC周長等于AB的長;其中正確的有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com