為了節(jié)約資源,科學指導居民改善居住條件,小王向房管部門提出了一個購買商品房的政策性方案.

人均住房面積(平方米)
單價(萬元/平方米)
不超過30(平方米)
0.3
超過30平方米不超過m(平方米)部分(45≤m≤60)
0.5
超過m平方米部分
0.7
 
根據(jù)這個購房方案:
(1)若某三口之家欲購買120平方米的商品房,求其應繳納的房款;
(2)設該家庭購買商品房的人均面積為x平方米,繳納房款y萬元,請求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時,求m的取值范圍.

(1)三口之家應繳購房款為: 42萬元;
(2) y=;
(3) 45≤m<50.

解析試題分析:(1)山口之家120平方,人均面積超過30平方米不超過m(平方米)部分(45≤m≤60),直接用圖表列式子即可;
(2)分情況討論y與x的關(guān)系式;
(3)借助(2)中的關(guān)系式即可.
試題解析:(1)由題意,得三口之家應繳購房款為:
0.3×90+0.5×30=42(萬元);
(2)由題意,得
①當0≤x≤30時,y=0.3×3x=0.9x;
②當30<x≤m時,y=0.3×3×30+0.5×3×(x-30)=1.5x-18;
③當x>m時,y=0.3×3×30+0.5×3(m-30)+0.7×3×(x-m)=2.1x-0.6m-18.
∴y=
(3)由題意,得
①當50≤m≤60時,y=1.5×50-18=57(舍);
②當45≤m<50時,y=2.1×50-0.6m-18=87-0.6m.
∵57<y≤60,∴57<87-0.6m≤60,∴45≤m<50.
綜合①②得45≤m<50.
考點:一次函數(shù)綜合題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=x+b(b≠0)交坐標軸于A、B兩點,點D在直線上,D的橫縱坐標之積為2,過D作兩坐標軸的垂線DC、DE,連接OD.
(1)求證:AD平分∠CDE;
(2)對任意的實數(shù)b(b≠0),求證:AD•BD為定值;
(3)是否存在直線AB,使得四邊形OBCD為平行四邊形?若存在,求出直線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點A,與函數(shù)的圖象相交于點B,
(1)求點B的坐標及一次函數(shù)的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

平面直角坐標系中,一次函數(shù)和反比例函數(shù)的圖象都經(jīng)過點.
(1)求的值和一次函數(shù)的表達式;
(2)點B在雙曲線上,且位于直線的下方,若點B的橫、縱坐標都是整數(shù),直接寫出點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,在平面直角坐標系中,等腰Rt△AOB的斜邊OB在x軸上,直線經(jīng)過等腰Rt△AOB的直角頂點A,交y軸于C點.
(1) 求點A坐標; 
(2)若點P為x軸上一動點.點Q的坐標是(,),△PAQ是以點A為直角頂點的等腰三角形.求出的值并寫出點Q的坐標.
(3)在(2)的條件下,若D是坐標平面內(nèi)任意一點,使點A、P、Q、D剛好能構(gòu)成平行四邊形,請直接寫出符合條件的點D的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知直線經(jīng)過點(1,-1),求關(guān)于x的不等式2x-b≥0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

一天,某漁船離開港口前往黃巖島海域捕魚,8小時后返航,此時一艘漁政船從該港口出發(fā)前往黃巖島巡查(假設漁政船與漁船沿同一航線航行)。下圖是漁政船及漁船到港口的距離S和漁船離開港口的時間t之間的函數(shù)圖象.
(1)寫出漁船離港口的距離S和它離開港口的時間t的函數(shù)關(guān)系式;
(2)在漁船返航途中,什么時間范圍內(nèi)兩船間距離不超過30海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

是任意兩個不等實數(shù),我們規(guī)定:滿足不等式的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為. 對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當m≤≤n時,有m≤≤n,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達式;
(3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,直接寫出實數(shù), 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=-x+6分別與x軸、y軸交于A、B兩點;直線y=x與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).

(1)求點C的坐標;
(2)當0<t<5時,求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)當t>0時,直接寫出點(4,)在正方形PQMN內(nèi)部時t的取值范圍.

查看答案和解析>>

同步練習冊答案