【題目】如圖,已知正△ABC的邊長為2,E,F(xiàn),G分別是AB,BC,CA上的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
【答案】D
【解析】根據(jù)題意,有AE=BF=CG,且正三角形ABC的邊長為2,
故BE=CF=AG=2﹣x;
故△AEG、△BEF、△CFG三個(gè)三角形全等.
在△AEG中,AE=x,AG=2﹣x.
則S△AEG= AE×AG×sinA= x(2﹣x);
故y=S△ABC﹣3S△AEG
= ﹣3× x(2﹣x)= (3x2﹣6x+4).
故可得其大致圖象應(yīng)類似于拋物線,且拋物線開口方向向上;
所以答案是:D.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的圖象,需要了解函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價(jià)元千克 | 20 | 40 |
零售價(jià)元千克 | 26 | 50 |
他購進(jìn)的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△ABC的斜邊長為5,斜邊上的高為2,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點(diǎn)C落在y軸正半軸上(如圖1).
(1)求線段OA,OB的長和經(jīng)過點(diǎn)A,B,C的拋物線的關(guān)系式.
(2)如圖2,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n>0),連接DP交BC于點(diǎn)E.
①當(dāng)△BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).
②又連接CD、CP(如圖3),△CDP是否有最大面積?若有,求出△CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校要購買A,B兩種型號(hào)的足球,若買2個(gè)A型足球和3個(gè)B型足球,則要花費(fèi)600元,若買1個(gè)A型足球和4個(gè)B型足球,則要花費(fèi)550元.
(1)求A,B兩種型號(hào)足球的銷售價(jià)格各是多少元/個(gè)?
(2)學(xué)校擬向該體育器材門市購買A,B兩種型號(hào)的足球共20個(gè),某體育用品商定有兩種優(yōu)惠活動(dòng),活動(dòng)一,一律打九折,活動(dòng)二,購物不超過1500元不優(yōu)惠,超過1500元部分打七折,請(qǐng)說明選擇哪種優(yōu)惠活動(dòng)購買足球更劃算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求AB的長和點(diǎn)C的坐標(biāo);
(2)求直線CD的解析式;
(3)y軸上是否存在一點(diǎn)P,使得S△PAB=,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的方程組
(1)求方程組的解(用含a的代數(shù)式表示);
(2)若2x>y,求a的范圍;
(3)求代數(shù)式的值;
(4)若,求a的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)閱讀:
古希臘數(shù)學(xué)家海倫曾提出一個(gè)利用三角形三邊之長求面積的公式:若一個(gè)三角形的三邊長分別為a、b、c,則這個(gè)三角形的面積為,其中.這個(gè)公式稱為“海倫公式”.
數(shù)學(xué)應(yīng)用:
如圖1,在△ABC中,已知AB=9,AC=8,BC=7.
(1)請(qǐng)運(yùn)用海倫公式求△ABC的面積;
(2)設(shè)AB邊上的高為,AC邊上的高,求的值;
(3)如圖2,AD、BE為△ABC的兩條角平分線,它們的交點(diǎn)為I,求△ABI的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 與 軸、 軸分別交于點(diǎn)A、B,點(diǎn)C在X軸上, ,則點(diǎn)C的坐標(biāo)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為直線x=-1,給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B( ,y1),C( ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 . 其中正確結(jié)論是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com