【題目】如圖,已知D、E、F分別是等邊△ABC的邊AB、BC、AC上的點(diǎn),且DE⊥BC、EF⊥AC、FD⊥AB,則下列結(jié)論不成立的是( )
A.△DEF是等邊三角形
B.△ADF≌△BED≌△CFE
C.DE=AB
D.S△ABC=3S△DEF
【答案】C
【解析】
求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等邊三角形DEF,根據(jù)全等三角形性質(zhì)推出三個(gè)三角形全等即可.求出AB=3BE,DE=BE,即可判斷選項(xiàng)C.根據(jù)相似三角形的面積比等于相似比的平方即可判斷選項(xiàng)D.
∵△ABC是等邊三角形,
∴AB=AC=BC,∠B=∠C=∠A=60°,
∵DE⊥BC、EF⊥AC、FD⊥AB,
∴∠DEB=∠EFC=∠FDA=90°,
∴∠BDE=∠FEC=∠AFD=30°,
∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,
∴DF=DE=EF,
∴△DEF是等邊三角形,
在△ADF、△BED、△CFE中
∴△ADF≌△BED≌△CFE,
∴AD=BE=CF,
∵∠DEB=90°,∠BDE=30°,
∴BD=2BE,DE=BE,
∴AB=3BE,
即DE=AB,
即DE=AB錯(cuò)誤;
∵△ABC和△DEF是等邊三角形,
∴△ABC∽△DEF,
∴S△ABC:S△DEF=(AB)2:(DE)2=(DE)2:DE2=3,
即只有選項(xiàng)C錯(cuò)誤;選項(xiàng)A、B、D正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了相似三角形的知識(shí)后,愛探究的小明下晚自習(xí)后利用路燈的光線去測(cè)量了一路燈的高度,并作出了示意圖:如圖,路燈(點(diǎn)P)距地面若干米,身高1.6米的小明站在距路燈的底部(O點(diǎn))20米的A點(diǎn)時(shí),身影的長度AM為5米;
(1)請(qǐng)幫助小明求出路燈距地面的高度;
(2)若另一名身高為1.5米小龍站在直線OA上的C點(diǎn)時(shí),測(cè)得他與小明的距離AC為7米,求小龍的身影的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,c>0)的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y=ax2+bx+c | … | p | t | n | t | 0 | … |
有下列結(jié)論:①b>0;②關(guān)于x的方程ax2+bx+c=0的兩個(gè)根是0和3;③p+2t<0;④m(am+b)≤﹣4a﹣c(m為任意實(shí)數(shù)).其中正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張寬為1cm的長方形紙片ABCD折疊成如圖所示的陰影圖案,頂點(diǎn)A,D互相重合,中間空白部分是以E為直角頂點(diǎn),腰長為2cm的等腰直角三角形,則紙片的長AD(單位:cm)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對(duì)角線AC于點(diǎn)E,F,連接BE,DF.
(1)求證:AE=CF;
(2)若BE=DE,求證:四邊形EBFD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.
(1)求證:AE=BF;
(2)連接EF,求證:∠FEB=∠GDA;
(3)連接GF,若AE=2,EB=4,求ΔGFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACE,△ACD均為直角三角形,∠ACE=90°,∠ADC=90°,AE與CD相交于點(diǎn)P,以CD為直徑的⊙O恰好經(jīng)過點(diǎn)E,并與AC,AE分別交于點(diǎn)B和點(diǎn)F.
(1)求證:∠ADF=∠EAC.
(2)若PC=PA,PF=1,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極參與鄂州市全國文明城市創(chuàng)建活動(dòng),我市某校在教學(xué)樓頂部新建了一塊大型宣傳牌,如下圖.小明同學(xué)為測(cè)量宣傳牌的高度,他站在距離教學(xué)樓底部處6米遠(yuǎn)的地面處,測(cè)得宣傳牌的底部的仰角為,同時(shí)測(cè)得教學(xué)樓窗戶處的仰角為(、、、在同一直線上).然后,小明沿坡度的斜坡從走到處,此時(shí)正好與地面平行.
(1)求點(diǎn)到直線的距離(結(jié)果保留根號(hào));
(2)若小明在處又測(cè)得宣傳牌頂部的仰角為,求宣傳牌的高度(結(jié)果精確到0.1米,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn)A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,.
(1)求拋物線的解析式;
(2)點(diǎn)為拋物線在直線下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)的坐標(biāo);
(3)若點(diǎn)為線段上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com