已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點(diǎn)A和點(diǎn)B,

(1)求出點(diǎn)A和點(diǎn)B的坐標(biāo)。
(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。
(3)當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.) 求:使得M=1的x值。=】

(1)A(-1,0)B(0,2)(2)-1<x<0(3)1

解析試題分析:(1)由題意分析,兩相交,則有:
-2x2+2 =2x+2
所以x=0,x=-1
故A(-1,0)B(0,2)
(2)通過圖像分析可得:當(dāng)-1<x<0時滿足條件
(3)由題意可知,當(dāng)取值最小時,此類條件在M=1時,,此時圖形的分析中
當(dāng)兩方程式相等時x=0,x=-1
故滿足條件
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評:在解題時要能靈運(yùn)用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:拋物線y1=x2-2mx+1,y2=-x2-2mx-1,CE、DF分別是拋物線y1、y2的對稱軸.
(1)請用2種不同的方法,判斷拋物線平行四邊形y1、y2中哪條經(jīng)過點(diǎn)A,哪條經(jīng)過點(diǎn)B?
(2)求證:CE=DF,并求m的取值范圍;
(3)直線l垂直于x軸,與拋物線y1、y2分別交于MN兩點(diǎn),求線段MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州二模)已知:拋物線y1=x2以點(diǎn)C為頂點(diǎn)且過點(diǎn)B,拋物線y2=a2x2+b2x+c2以點(diǎn)B為頂點(diǎn)且過點(diǎn)C,分別過點(diǎn)B、C作x軸的平行線,交拋物線y1=x2y2=a2x2+b2x+c2于點(diǎn)A、D,且AB=AC.
(1)如圖1,①求證:△ABC為正三角形;②求點(diǎn)A的坐標(biāo);
(2)①如圖2,若將拋物線“y1=x2”改為“y1=x2+1”,其他條件不變,求CD的長;
②如圖3,若將拋物線“y1=x2”改為“y1=3x2+b1x+c1”,其他條件不變,求a2的值;
(3)若將拋物線“y1=x2”改為拋物線“y1=a1x2+b1x+c1”,其他條件不變,直接寫出b1關(guān)于b2的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:拋物線y1=-2x2+2與直線y2=2x+2相交

點(diǎn)A和點(diǎn)B,

(1)求出點(diǎn)A和點(diǎn)B的坐標(biāo)。

(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。

(3)當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,

取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.) 求:使得M=1的x值。=】

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省中等學(xué)校招生考試數(shù)學(xué)試卷樣卷(解析版) 題型:解答題

(2009•江西模擬)如圖,已知:拋物線y1=x2-2mx+1,y2=-x2-2mx-1,CE、DF分別是拋物線y1、y2的對稱軸.
(1)請用2種不同的方法,判斷拋物線平行四邊形y1、y2中哪條經(jīng)過點(diǎn)A,哪條經(jīng)過點(diǎn)B?
(2)求證:CE=DF,并求m的取值范圍;
(3)直線l垂直于x軸,與拋物線y1、y2分別交于MN兩點(diǎn),求線段MN的最小值.

查看答案和解析>>

同步練習(xí)冊答案