如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

【答案】分析:(1)由切割線定理知,AD2=AE•AB=AE(AE+BE),由此可求得BE的長;
(2)由切線長定理知,CD=BC,由勾股定理知,AB2+BC2=AC2即82+BC2=(4+BC)2,解得BC=6,則可由直角三角形的面積公式求得△ABC的面積.
解答:解:(1)∵AD是切線,AEB是圓的割線,
∴AD2=AE•AB=AE(AE+BE),解得BE=6cm;

(2)∵∠B=90°,
∴CB也是圓的切線,
∵CD也是圓的切線,則有CD=BC,
在Rt△ABC中,由勾股定理知,AB2+BC2=AC2即82+BC2=(4+BC)2,解得BC=6cm,
∴S△ABC=AB•BC=24cm2
點評:本題利用了切割線定理、切線長定理、勾股定理、切線的判定和性質(zhì)、直角三角形的面積公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案