已知拋物線過點(diǎn)A(-1,0),B(0,6),對(duì)稱軸為直線x=1
(1)求拋物線的解析式;
(2)畫出拋物線的草圖;
(3)根據(jù)圖象回答:當(dāng)x取何值時(shí),y>0.
(1)設(shè)二次函數(shù)的解析式為:y=a(x-1)2+k,
∵拋物線過點(diǎn)A(-1,0),B(0,6),
∴a(-1-1)2+k=0,a+k=6,
解得:a=-2;k=6,
二次函數(shù)的解析式為:y=-2x2+4x+6;

(2)如圖所示;

(3)根據(jù)圖象得:當(dāng)-1<x<3時(shí),y>0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-
1
2
x2
+bx+c的圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=(x+1)2+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3);
(1)求拋物線的對(duì)稱軸及k的值;
(2)拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得|PB-PC|的值最大?若存在,求出點(diǎn)P的坐標(biāo);
(3)如果點(diǎn)M是拋物線在第三象限的一動(dòng)點(diǎn);當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),M點(diǎn)到AC的距離最大?求出此時(shí)的最大距離及M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)B的坐標(biāo)為(-2,-2),點(diǎn)A在第一象限內(nèi),且tan∠AOx=4.過點(diǎn)A作直線ACx軸,交拋物線于另一點(diǎn)C.
(1)求雙曲線和拋物線的解析式;
(2)計(jì)算△ABC的面積;
(3)在拋物線上是否存在點(diǎn)D,使△ABD的面積等于△ABC的面積?若存在,請(qǐng)你寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線c1經(jīng)過A,B,C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線c1解析式;
(2)求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似,如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說明理由;
(4)設(shè)拋物線c1的對(duì)稱軸與x軸交于點(diǎn)F,另一條拋物線c2經(jīng)過點(diǎn)E(拋物線c2與拋物線c1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸相交于點(diǎn)G,且以M,G,E為頂點(diǎn)的三角形與以D,E,F(xiàn)為頂點(diǎn)的三角形全等,求a,b的值.(只需寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過點(diǎn)A(c,-2),,求證:這個(gè)二次函數(shù)圖象的對(duì)稱軸是x=3.
題目中的矩形框部分是一段墨水污染了無法辨認(rèn)的文字.
(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請(qǐng)寫出求解過程;若不能,請(qǐng)說明理由;
(2)請(qǐng)你根據(jù)已有的信息,在原題中的矩形框中,填加一個(gè)適當(dāng)?shù)臈l件,把原題補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿的市場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖二的拋物線段表示.

(1)寫出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式P;寫出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q;
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿純收益最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖矩形OABC,AB=2OA=2n,分別以O(shè)A和OC為x、y軸建立平面直角坐標(biāo)系,連接OB,沿OB折疊,使點(diǎn)A落在P處.過P作PQ⊥y軸于Q.
(1)求OD:OA的值;
(2)以B為頂點(diǎn)的拋物線:y=ax2+bx+c,經(jīng)過點(diǎn)D,與直線OB相交于E,過E作EF⊥y軸于F,試判斷2•PQ•EF與矩形OABC面積的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用長(zhǎng)為6m的鋁合金型材做一個(gè)形狀如圖所示的矩形窗框,要使做成的窗框的透光面積最大,則該窗的長(zhǎng),寬應(yīng)分別做成( 。
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

同步練習(xí)冊(cè)答案