(2000•臺州)如圖,已知AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC,若OA=2,且AD+OC=6,則CD=   
【答案】分析:連接BD,根據(jù)AD∥OC,易證得OC⊥BD,根據(jù)垂徑定理知:OC垂直平分BD,可得CD=CB,因此只需求出CB的長即可;
延長AD,交BC的延長線于E,則OC是△ABC的中位線;設(shè)未知數(shù),表示出OC、AD、AE的長,然后在Rt△ABE中,表示出BE的長;最后根據(jù)切割線定理即可求出未知數(shù)的值,進而可在Rt△CBO中求出CB的長,即CD的長.
解答:解:連接BD,則∠ADB=90°;
∵AD∥OC,
∴OC⊥BD;
根據(jù)垂徑定理,得OC是BD的垂直平分線,即CD=BC;
延長AD交BC的延長線于E;
∵O是AB的中點,且AD∥OC;
∴OC是△ABE的中位線;
設(shè)OC=x,則AD=6-x,AE=2x,DE=3x-6;
Rt△ABE中,根據(jù)勾股定理,得:BE2=4x2-16;
由切割線定理,得BE2=ED•AE=2x(3x-6);
∴4x2-16=2x(3x-6),解得x=2,x=4;
當x=2時,OC=OB=2,由于OC是Rt△OBC的斜邊,顯然x=2不合題意,舍去;
當x=4時,OC=4,OB=2;
在Rt△OBC中,CB==2
∴CD=CB=2
點評:本題主要考查了圓周角定理、平行線的性質(zhì)、切割線定理、中位線定理等知識,綜合性強,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•臺州)如圖,⊙O1與⊙O2內(nèi)切于點A,D為⊙O2上一點,過點D作⊙O2的切線交⊙O1于F、E,連接AF,AE,分別交⊙O2于B,C,連接BC,AD,BC與AD相交于點P,延長AD交⊙O1于Q.
(1)求證:BC∥EF;
(2)求證:FD•PC=AP•DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:解答題

(2000•臺州)如圖,⊙O1與⊙O2內(nèi)切于點A,D為⊙O2上一點,過點D作⊙O2的切線交⊙O1于F、E,連接AF,AE,分別交⊙O2于B,C,連接BC,AD,BC與AD相交于點P,延長AD交⊙O1于Q.
(1)求證:BC∥EF;
(2)求證:FD•PC=AP•DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《四邊形》(02)(解析版) 題型:解答題

(2000•臺州)如圖所示,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BE=DF.
求證:(1)AE=CF;(2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(2000•臺州)如圖所示,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BE=DF.
求證:(1)AE=CF;(2)AE∥CF.

查看答案和解析>>

同步練習(xí)冊答案