(2007•宜賓)已知;如圖,在△ABC中,AB=BC,∠ABC=90度.F為AB延長線上一點,點E在BC上,BE=BF,連接AE、EF和CF.
(1)求證:AE=CF;
(2)若∠CAE=30°,求∠EFC的度數(shù).

【答案】分析:根據(jù)已知利用SAS判定△ABE≌△CBF,由全等三角形的對應邊相等就可得到AE=CF;根據(jù)已知利用角之間的關(guān)系可求得∠EFC的度數(shù).
解答:(1)證明:在△AEB和△CFB中,

∴△ABE≌△CBF(SAS).
∴AE=CF.

(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,
∴∠CAB=∠ACB=(180°-90°)=45°,∠EAB=45°-30°=15°.
∵△ABE≌△CBF,
∴∠EAB=∠FCB=15°.
∵BE=BF,∠EBF=90°,
∴∠BFE=∠FEB=45°.
∴∠EFC=180°-90°-15°-45°=30°.
點評:此題主要考查了全等三角形的判定方法及等腰三角形的性質(zhì)等知識點的掌握情況;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•宜賓)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標;
(3)對于(2)中的點B,在拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•宜賓)已知:如圖,在平面直角坐標系xoy中,一次函數(shù)y=x+3的圖象與x軸和y軸交于A、B兩點,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到△A′OB′.
(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點C,求S△A´BC:S△ABO的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2007•宜賓)已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使銳角△AOB的面積等于3.求點B的坐標;
(3)對于(2)中的點B,在拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年四川省宜賓市中考數(shù)學試卷(解析版) 題型:解答題

(2007•宜賓)已知:如圖,在平面直角坐標系xoy中,一次函數(shù)y=x+3的圖象與x軸和y軸交于A、B兩點,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到△A′OB′.
(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點C,求S△A´BC:S△ABO的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《三角形》(16)(解析版) 題型:解答題

(2007•宜賓)已知:如圖,在半徑為4的⊙O中,圓心角∠AOB=90°,以半徑OA、OB的中點C、F為頂點作矩形CDEF,頂點D、E在⊙O的劣弧上,OM⊥DE于點M.試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習冊答案