【題目】如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.
【答案】
【解析】
在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質(zhì)利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.
在AB上取BN=BE,連接EN,作PM⊥BC于M.
∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
∵AB=BC,BN=BE,∴AN=EC.
∵∠AEP=90°,∴∠AEB+∠PEC=90°.
∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形OABC是長方形,點D在OC邊上,以AD為折痕,將△OAD向上翻折,點O恰好落在BC邊上的點E處,已知長方形OABC的周長為16.
(1)若OA長為x,則B點坐標為_____;
(2)若A點坐標為(5,0),求點D和點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.
(1)點A的坐標為 ;點B的坐標為 ;
(2)求OC的長度,并求出此時直線BC的表達式;
(3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“六一”兒童節(jié)前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數(shù)進行抽樣統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:
(1)該校有_____個班級,補全條形統(tǒng)計圖;
(2)求該校各班留守兒童人數(shù)數(shù)據(jù)的平均數(shù),眾數(shù)與中位數(shù);
(3)若該鎮(zhèn)所有小學共有60個教學班,請根據(jù)樣本數(shù)據(jù),估計該鎮(zhèn)小學生中,共有多少名留守兒童.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側),與y軸交于點C.
(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;
(2)P(m,t)為拋物線上的一個動點.
①當點P關于原點的對稱點P′落在直線BC上時,求m的值;
②當點P關于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結EM交AC于點N,連結DM、CM以下說法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com