如圖,在直角坐標(biāo)系中,以點(diǎn)A(,0)為圓心,以為半徑的圓與x軸交于B、C兩點(diǎn),與y軸交于D、E兩點(diǎn).
(1)求D點(diǎn)坐標(biāo).
(2)若B、C、D三點(diǎn)在拋物線y=ax2+bx+c上,求這個(gè)拋物線的解析式.
(3)若⊙A的切線交x軸正半軸于點(diǎn)M,交y軸負(fù)半軸于點(diǎn)N,切點(diǎn)為P,∠OMN=30°,試判斷直線MN是否經(jīng)過(guò)所求拋物線的頂點(diǎn)?說(shuō)明理由.

【答案】分析:(1)連接AD,構(gòu)造直角三角形解答,在直角△ADO中,OA=,AD=2,根據(jù)勾股定理就可以求出AD的長(zhǎng),求出D的坐標(biāo).
(2)求出B、C、D的坐標(biāo),用待定系數(shù)法設(shè)出一般式解答;
(3)求出拋物線交點(diǎn)坐標(biāo),連接AP,則△APM是直角三角形,且AP等于圓的半徑,根據(jù)三角函數(shù)就可以求出AM的長(zhǎng),已知OA,就可以得到OM,則M點(diǎn)的坐標(biāo)可以求出;同理可以在直角△BNM中,根據(jù)三角函數(shù)求出BN的長(zhǎng),求出N的坐標(biāo),根據(jù)待定系數(shù)法就可以求出直線MN的解析式.將交點(diǎn)坐標(biāo)代入直線解析式驗(yàn)證即可.
解答:解:(1)連接AD,得
OA=,AD=2
∴OD===3
∴D(0,-3).

(2)由B(-,0),C(3,0),D(0,-3)三點(diǎn)在拋物線y=ax2+bx+c上,
,
解得
∴拋物線為

(3)連接AP,在Rt△APM中,∠PMA=30°,AP=2
∴AM=4
∴M(5,0)

∴N(0,-5)
設(shè)直線MN的解析式為y=kx+b,由于點(diǎn)M(5,0)和N(0,-5)在直線MN上,

解得
∴直線MN的解析式為
∵拋物線的頂點(diǎn)坐標(biāo)為(,-4),
當(dāng)x=時(shí),y=
∴點(diǎn)(,-4)在直線上,
即直線MN經(jīng)過(guò)拋物線的頂點(diǎn).
點(diǎn)評(píng):此題將用待定系數(shù)法求函數(shù)解析式和圓以及存在性問(wèn)題相結(jié)合,考查了同學(xué)們的實(shí)際應(yīng)用能力,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫(huà)出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫(huà)出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案