雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線y=x2+3x+1的一部分,如圖所示.
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請(qǐng)說明理由.

【答案】分析:(1)將二次函數(shù)化簡(jiǎn)為y=-(x-);2+,即可解出y最大的值.
(2)當(dāng)x=4時(shí)代入二次函數(shù)可得點(diǎn)B的坐標(biāo)在拋物線上.
解答:解:(1)將二次函數(shù)y=x2+3x+1化成y=(x2,(3分),
當(dāng)x=時(shí),y有最大值,y最大值=,(5分)
因此,演員彈跳離地面的最大高度是4.75米.(6分)

(2)能成功表演.理由是:
當(dāng)x=4時(shí),y=×42+3×4+1=3.4.
即點(diǎn)B(4,3.4)在拋物線y=x2+3x+1上,
因此,能表演成功.(12分).
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)的求法及二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(精英家教網(wǎng)看成一點(diǎn))的路線是拋物線y=-
35
x2+3x+1的一部分,如圖所示.
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(精英家教網(wǎng)看成一點(diǎn))的路線是拋物線y=-
35
x2+3x+1的一部分,如圖:
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.8m,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4m,問這次表演是否成功?若能成功,請(qǐng)通過計(jì)算說明理由;若不能成功,應(yīng)如何調(diào)整人梯的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處跳到人梯頂端椅子B處,其身體的路線是拋物線y=-
35
x2+3x+1
的一部分,則演員彈簧離地面的最大高度為
4.75
4.75
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端的A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))運(yùn)動(dòng)的路線是拋物線y=-
3
5
x2+3x+1
的一部分,如圖所示,已知人梯到起跳點(diǎn)A的水平距離是4米,若要此次表演成功,則人梯高BC=
17
5
17
5
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市九年級(jí)上期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖.

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案