已知關(guān)于x的一元二次方程x2-(k+1)x+k=0.
(1)求證:對于任意實(shí)數(shù)k,方程都有兩個(gè)實(shí)數(shù)根;
(2)若此方程的一個(gè)實(shí)數(shù)根為0,求k的值及方程的另一個(gè)根.
分析:(1)要想證明對于任意實(shí)數(shù)k,方程有兩個(gè)實(shí)數(shù)根,只要證明△≥0即可;
(2)把方程的一個(gè)實(shí)數(shù)根0代入原方程求出k的值,然后把k的值代入原方程求出方程的另一個(gè)根.
解答:(1)證明:∵△=b2-4ac=[-(k+1)]2-4×1×k=(k-1)2≥0,
∴對于任意實(shí)數(shù)k,方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)解:把x=0代入方程得:0-(k+1)×0+k=0,解得k=0,
把k=0代入方程得:x2-x=0,解得:x1=0,x2=1,
故k的值為0,方程的另一個(gè)根為0.
點(diǎn)評:本題考查了一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒有實(shí)數(shù)根.
同時(shí)本題考查了方程的解的定義,就是能使方程左右兩邊相等的未知數(shù)的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊答案