已知:如圖,在平面直角坐標(biāo)系內(nèi),直線(xiàn)y=x上有一點(diǎn)A,AD⊥x軸于D,且AD=3,C是x軸上的一點(diǎn),CA ⊥AO, 長(zhǎng)度等于OD的線(xiàn)段EF在x軸上沿OC方向以1/s的速度向點(diǎn)C運(yùn)動(dòng)(運(yùn)動(dòng)前EF和OD重合,當(dāng)F點(diǎn)與C重合時(shí)停止運(yùn)動(dòng),包括起點(diǎn)、終點(diǎn)),過(guò)E,F(xiàn)分別作OC的垂線(xiàn)交直角邊于點(diǎn)P、點(diǎn)Q,連結(jié)線(xiàn)段PD,QD,PQ,PQ交線(xiàn)段AD于點(diǎn)M,若設(shè)EF運(yùn)動(dòng)的時(shí)間為t(s),
(1)寫(xiě)出A點(diǎn)坐標(biāo)( ____,____ ) ;PE= ______(用含t的代數(shù)式表示線(xiàn)段), 其中自變量t的取值范圍為 ;
(2)是否存在t的值,使得線(xiàn)段PD⊥QD?若存在,請(qǐng)求出相應(yīng)的t的值,若不存在,請(qǐng)說(shuō)明理由;
(3)①當(dāng)t=秒時(shí),線(xiàn)段AM= ______; 
        ②求線(xiàn)段AM關(guān)于自變量t的函數(shù)解析式,并求出AM的最大值。
(1)(4,3); ; t的取值范圍為0≤t≤
  ∵AP⊥AQ, AM⊥EF
   易證AOD∽ADC∽AOC∽OPE∽CQF,
  且三邊之比都為3:4:5 求得PE=, DC=
(2)不存在t的值使PD⊥QD,理由如下: 
  ∵OE=DF=t,∴FC=-t ∴QF= 
  若PD⊥QD,易證△PED∽△DQF
  則=
    ∴ =
   4-t= -t
   4= 這是不可能的,
  ∴不存在t的值使PD⊥QD
(3)① 
  ② ∵AP⊥AQ, AM⊥EF
   ∴SAPQ= AP×AQ= AM×ED+AM×DF=AM×EF
   ∴AM= = = =-2
   =-(t-2)2
∴當(dāng)t=2 秒時(shí),AM最大值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線(xiàn)y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線(xiàn)是一條拋物線(xiàn),在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線(xiàn)段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線(xiàn)拋物線(xiàn)的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫(xiě)出滿(mǎn)足條件的一個(gè)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線(xiàn)l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線(xiàn)l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線(xiàn)x=1交直線(xiàn)l1于點(diǎn)E,交直線(xiàn)l2于點(diǎn)D,平行于y軸的直x=a交直線(xiàn)l1于點(diǎn)M,交直線(xiàn)l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶萬(wàn)州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開(kāi)始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線(xiàn)從AC開(kāi)始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線(xiàn)也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過(guò)程中, 四邊形OPEM是什么四邊形?請(qǐng)說(shuō)明理由。若
用y表示四邊形OPEM的面積 ,直接寫(xiě)出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿(mǎn)足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線(xiàn)是一條拋物線(xiàn),在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線(xiàn)段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線(xiàn)拋物線(xiàn)的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫(xiě)出滿(mǎn)足條件的一個(gè)答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案