【題目】已知:如圖,在□ABCD中,點EBC的中點,連接AE并延長交DC的延長線于點F,連接BF

(1)求證:△ABE≌△FCE;

(2)AFAD,判斷四邊形ABFC的形狀,并說明理由.

【答案】1)證明見解析;(2)四邊形ABFC是矩形,證明見解析;

【解析】

1)根據(jù)平行四邊形的性質得出ABDC,推出,根據(jù)AAS證兩三角形全等即可;

2)根據(jù)全等得出AB=CF,根據(jù)ABCF得出平行四邊形ABFC,推出BC=AF,根據(jù)矩形的判定推出即可;

1)證明:如圖,

四邊形ABCD是平行四邊形,

∴AB DC,即ABDF,

,

∵點EBC的中點,

BE=EC,

△ABE△FCE中,

,

(2)四邊形ABFC是矩形,理由如下:

,

AB=FC

ABFC,

∴四邊形ABFC是平行四邊形,

AD=BC,

AF=AD,

AF=BC,

∴四邊形ABFC是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】周日上午小明從家跑步去圖書館,在那里看了一會兒書后又走到文具店去買筆記本,然后散步回家.下圖反映的是小明離家的距離 與所用時間之間的函數(shù)關系,據(jù)此回答問題:

(1)圖書館離小明家 ,小明從家到圖書館用了

(2)圖書館離文具店____

(3)小明在文具店停留了

(4)小明從文具店回到家的平均速度是多少千米/小時?(寫出簡要計算過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,作OFABBC于點F,連接EF.

(1)求證:OFCE

(2)求證:EF是⊙O的切線;

(3)O的半徑為3,EAC=60°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種竹制躺椅如圖①所示,其側面示意圖如圖②③所示,這種躺椅可以通過改變支撐桿CD的位置來調節(jié)躺椅舒適度.假設AB所在的直線為地面,已知AE=120 cm,當把圖②中的支撐桿CD調節(jié)至圖③中的C′D的位置時,∠EAB20°變?yōu)?/span>25°.

(1)你能求出調節(jié)后該躺椅的枕部E到地面的高度增加了多少嗎?(結果精確到0.1 cm,參考數(shù)據(jù):sin 20°≈0.342 0,sin 25°≈0.422 6)

(2)已知點OAE的一個三等分點,根據(jù)人體工程學,當點O到地面的距離為26 cm時,人體感覺最舒適.請你求出此時枕部E到地面的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點坐標為,且與y軸交于點C(0,2),與x軸交于A,B兩點(A在點B的左邊).

(1)求拋物線的表達式及A,B兩點的坐標.

(2)(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值;若不存在,請說明理由;

(3)在以AB為直徑的⊙M中,CE與⊙M相切于點E,CEx軸于點D,求直線CE的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinA,BC8,點DAB的中點,過點BCD的垂線,垂足為點E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是利用四邊形的不穩(wěn)定性制造的一個移動升降裝修平臺,其基本圖形是菱形,主體部分相當于由6個菱形相互連接而成,通過改變菱形的角度,從而可改變裝修平臺高度.

1)如圖(1)是一個基本圖形,已知AB=1米,當∠ABC60°時,求AC的長及此時整個裝修平臺的高度(裝修平臺的基腳高度忽略不計);

2)當∠ABC60°變?yōu)?/span>90°(如圖(2)是一個基本圖形變化后的圖形)時,求整個裝修平臺升高了多少米.[結果精確到0.1米]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今秋,河北保定易縣柿子雖大豐收,卻讓果農犯了愁.據(jù)悉,今年易縣有2億斤柿子滯銷,少數(shù)鄉(xiāng)鎮(zhèn)柿子只得4毛錢賤賣,多地柿子無人問津,為解決銷路,一家柿子種植大戶為村里聯(lián)系了一個銷售渠道,已知有480噸的柿子需運出,某汽車運輸公司承辦了這次運送任務.

(1)運輸公司平均每天運送柿子x噸,需要y天完成運輸任務,寫出y關于x的函數(shù)解析式;

(2)這個公司計劃派出4輛卡車,每天共運送32噸.

①求需要多少天完成全部運送任務?

②現(xiàn)需要提前5天運送完畢,需增派同樣的卡車多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(4,0),其部分圖象如圖所示,下列結論:①拋物線過原點;②ab+c0;4a+b+c=0④拋物線的頂點坐標為(2,b);⑤當x1時,yx增大而增大.其中結論正確的是( 。

A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤

查看答案和解析>>

同步練習冊答案