(1)如圖①,P為△ABC的邊AB上一點(P不與點A、點B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點.
畫法初探
①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點P(畫圖工具不限,保留畫圖痕跡或有必要的說明);
辯證思考
②是不是所有的三角形都存在它的邊上的相似點?如果是,請說明理由;如果不是,請找出一個不存在邊上相似點的三角形;
特例分析
③已知P為△ABC的邊AB上的相似點,連接PC,若△ACP∽△ABC,則△ABC的形狀是 ;
④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(P不與點A、點B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.
①類比(1)中的“畫法初探”,可以提出問題:對于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?
你的解答是: (只需描述PQ的畫法,不需在圖上畫出PQ).
②請繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個欄目對矩形的相似線進行研究,要求每個欄目提出一個問題并解決.
(1)①在∠ABC內,作∠CBD=∠A,在∠ACB內,作∠BCE=∠ABC,BD交CE于點P,則P為△ABC的自相似點;②不是,如正三角形;③直角三角形;④;(2)①在距離A點b2a處取點P,作PQ⊥CD,垂足為Q;②辯證思考:問題:是不是所有的矩形都存在它的邊上的相似線?如果是,請說明理由;如果不是,請找出一個不存在邊上相似線的矩形.解答:不是,如正方形.
解析試題分析:(1)①根據(jù)“自相似點”的定義結合相似三角形的判定方法求解即可;
②根據(jù)“自相似點”的定義結合相似三角形的判定方法即可作出判斷;
③根據(jù)“自相似點”的定義結合相似三角形的性質即可作出判斷;
④先根據(jù)等腰三角形的性質求得∠B、∠ACB的度數(shù),再根據(jù)P是△ABC邊AB上的相似點可證得△CBP∽△ABC,再根據(jù)相似三角形的性質求解即可;
(2)①在距離A點處取點P,作PQ⊥CD,垂足為Q;
②答案不唯一,合理即可.
(1)①在∠ABC內,作∠CBD=∠A,
在∠ACB內,作∠BCE=∠ABC,BD交CE于點P,
則P為△ABC的自相似點;
②不是,如正三角形.
③直角三角形.
④∵在△ABC中,AB=AC,∠A=36°,
∴∠B=∠ACB=72°.
∵P是△ABC邊AB上的相似點.
∴△CBP∽△ABC.
∴∠BCP=∠A=36°,且.
∴∠ACP=36°=∠A,∠B=∠BPC.
∴AP=CP=BC.
設BP=x,AP=CP=BC=y(tǒng),有=.
化簡,得x2+xy-y2=0.
舍去負根,得=,即=;
(2)①在距離A點處取點P,作PQ⊥CD,垂足為Q;
②辯證思考
問題:是不是所有的矩形都存在它的邊上的相似線?如果是,請說明理由;如果不是,請找出一個不存在邊上相似線的矩形.
解答:不是,如正方形.
特例分析
答案不唯一,以下答案供參考:
i)問題:已知PQ為矩形ABCD的邊AB、CD上的相似線,且矩形PQCB∽矩形ABCD,a、b之間有何數(shù)量關系?
解答:a=2b.
ii)問題:已知PQ為矩形ABCD的邊AB、CD上的相似線,且P 是AB的中點,a、b之間有何數(shù)量關系?
解答:a=2b.
iii)問題:已知PQ為矩形ABCD的邊AB、CD上的相似線,當a=2,b=1時,求AP.
解答:AP=12.
iv)問題:已知矩形ABCD為黃金矩形(即=),PQ為矩形ABCD的邊AB、CD上的相似線,求.
解答:=.
考點:相似三角形的綜合題
點評:此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
科目:初中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com