【題目】如圖,已知 兩點的坐標(biāo)分別為,點分別是直線x軸上的動點,,是線段的中點,連接軸于點;當(dāng)⊿面積取得最小值時,的值是(

A.B.C.D.

【答案】B

【解析】

如圖,設(shè)直線x=-5x軸于K.由題意KD=CF=5,推出點D的運動軌跡是以K為圓心,5為半徑的圓,推出當(dāng)直線AD與⊙K相切時,ABE的面積最小,作EHABH.求出EH,AH即可解決問題.

如圖,設(shè)直線x=-5x軸于K.由題意KD=CF=5,

∴點D的運動軌跡是以K為圓心,5為半徑的圓,

∴當(dāng)直線AD與⊙K相切時,ABE的面積最小,

AD是切線,點D是切點,

ADKD

AK=13,DK=5,

AD=12

tanEAO=

,

OE=,

AE=

EHABH

SABE=ABEH=SAOB-SAOE,

EH=,

,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸的交點為A,B,與y軸交于C

1)求拋物線的對稱軸和點C坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.拋物線在點A,B之間的部分與線段所圍成的區(qū)域為圖形W(不含邊界).

①當(dāng)時,求圖形W內(nèi)的整點個數(shù);

②若圖形W內(nèi)有2個整數(shù)點,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)和一次函數(shù)相交于點,

1)求一次函數(shù)和反比例函數(shù)解析式;

2)連接OA,試問在x軸上是否存在點P,使得為以OA為腰的等腰三角形,若存在,直接寫出滿足題意的點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是⊙O的直徑AB延長線上一點,過⊙O上一點DDFABF,交⊙O于點E,點MBE的中點,AB4,∠E=∠C30°

1)求證:CD是⊙O的切線;

2)求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好地推進(jìn)太原市生活垃圾分類工作,改善城市生態(tài)環(huán)境,20191217日,太原市政府召開了太原市生活垃圾分類推進(jìn)會,意味著太原垃圾分類戰(zhàn)役的全面打響.某小區(qū)準(zhǔn)備購買兩種型號的垃圾箱,通過市場調(diào)研得知:購買3型垃圾箱和2型垃圾箱共需540元,購買2型垃圾箱比購買3型垃圾箱少用160元.

1)求每個型垃圾箱和型垃圾箱各多少元?

2)該小區(qū)物業(yè)計劃用不多于2100元的資金購買兩種型號的垃圾箱共20個,則該小區(qū)最多可以購買型垃圾箱多少個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.

求出每天的銷售利潤與銷售單價之間的函數(shù)關(guān)系式;

求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?

如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的頂點D關(guān)于射線CP的對稱點G落在正方形內(nèi),連接BG并延長交邊AD于點E,交射線CP于點F.連接DFAF,CG

1)試判斷DFBF的位置關(guān)系,并說明理由;

2)若CF4,DF2,求AE的長;

3)若∠ADF2FAD,求tanFAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個進(jìn)價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.

(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?

(2)商店若準(zhǔn)備獲得利潤6000元,并且使進(jìn)貨量較少,則每個定價為多少元?應(yīng)進(jìn)貨多少個?

(3)商店若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?

【答案】(1)x+10元;(2)每個定價為70元,應(yīng)進(jìn)貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.

【解析】試題分析:(1)根據(jù)利潤=銷售價-進(jìn)價列關(guān)系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.

試題解析:由題意得:(1)50+x-40=x+10(元),

(2)設(shè)每個定價增加x,

列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進(jìn)貨量較少,則每個定價為70,應(yīng)進(jìn)貨200,

(3)設(shè)每個定價增加x,獲得利潤為y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250.

型】解答
結(jié)束】
24

【題目】猜想與證明:

如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若MAF的中點,連接DM、ME,試猜想DMME的關(guān)系,并證明你的結(jié)論.

拓展與延伸:

(1)若將猜想與證明中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關(guān)系為   

(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,EBC的中點,FCD上一點,AEEF,下列結(jié)論:BAE30°;ABE∽△AEFCD3CF;SABE4SECF.其中正確的有_____(填序號).

查看答案和解析>>

同步練習(xí)冊答案