9、如圖,已知PA是⊙O的切線,A是切點PC是過圓心的一條割線,點B、C是它與⊙O的交點,且PA=8,PB=4.則⊙O的半徑為
6
分析:根據(jù)切割線定理得PA2=PB•PC,從而可求得PC與BC的長,從而不難求得半徑的長.
解答:解:∵PA2=PB•PC,PA=8,PB=4,
∴PC=16,
∴BC=12,
∴圓的半徑是6.
點評:此題主要是運用了切割線定理,注意最后要求的是圓的半徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知PA是⊙O的切線,切點為A,PA=3,∠APO=30°,那么OP=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知PA是⊙O的切線,A為切點,PC與⊙O相交于B、C兩點,PB=2cm,BC=8cm,則PA的長等于( 。
A、4cm
B、16cm
C、20cm
D、2
5
cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知PA是⊙O的切線,切點為A,PA=
3
,∠APO=30°,那么OP=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知PA是∠MAN的平分線,B、C分別是AM、AN上的兩點,若要△PAB≌△PAC,則需要添加的一個條件是
AB=AC
AB=AC

查看答案和解析>>

同步練習冊答案