如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當點F在線段BO上,且點M,F,C三點在同一條直線上時,求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
解:(1)∵四邊形ABCD是菱形,
∴AC⊥BD,OB=OD=BD,
∵BD=24,
∴OB=12,
在RT△OAB中,
∵AB=13,
∴OA===5,
(2)如圖2,
∵四邊形ABCD是菱形,
∴BD垂直平分AC,
∴FA=FC,∠FAC=∠FCA,
由已知AF=AM,∠MAF=60°,
∴△AFM為等邊三角形,
∴∠M=∠AFM=60°,
∵點M,F,C三點在同一條直線上,
∴∠FAC+∠FCA=∠AFM=60°,
∴∠FAC=∠FCA=30°,
∴∠MAC=∠MAF+∠FAC=60°+30°=90°,
在RT△ACM中
∵tan∠M=,
∴tan60°=,
∴AC=AM.
(3)如圖,連接EM,
∵△ABE是等邊三角形,
∴AE=AB,∠EAB=60°,
由(1)知△AFM為等邊三角形,
∴AM=AF,∠MAF=60°,
∴∠EAM=∠BAF,
在△AEM和△ABF中,
,
∴△AEM≌△ABF(SAS),
∵△AEM的面積為40,△ABF的高為AO
∴BF•AO=40,BF=16,
∴FO=BF﹣BO=16﹣12=4
AF===,
∴△AFM的周長為3.
科目:初中數學 來源: 題型:
在一個不透明的盒子里有紅球、白球、黑球各一個,它們除了顏色外其余都相同.小明從盒子里隨機摸出一球,記錄下顏色后放回盒子里,充分搖勻后,再隨機摸出一球,并記錄下顏色.請用列表法或畫樹狀圖(樹形圖)法求小明兩次摸出的球顏色不同的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
空氣質量狀況已引起全社會的廣泛關注,某市統(tǒng)計了2013年每月空氣質量達到良好以上的天數,整理后制成如下折線統(tǒng)計圖和扇形統(tǒng)計圖.
根據以上信息解答下列問題:
(1)該市2013年每月空氣質量達到良好以上天數的中位數是 天,眾數是 天;
(2)求扇形統(tǒng)計圖中扇形A的圓心角的度數;
(3)根據以上統(tǒng)計圖提供的信息,請你簡要分析該市的空氣質量狀況(字數不超過30字).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com