【題目】某旅游風(fēng)景區(qū)出售一種紀(jì)念品,該紀(jì)念品的成本為12元/個,這種紀(jì)念品的銷售價格為x(元/個)與每天的銷售數(shù)量y(個)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)銷售價格定為多少時,每天可以獲得最大利潤?并求出最大利潤.
(3)“十一”期間,游客數(shù)量大幅增加,若按八折促銷該紀(jì)念品,預(yù)計每天的銷售數(shù)量可增加200%,為獲得最大利潤,“十一”假期該紀(jì)念品打八折后售價為多少?
【答案】
(1)解:設(shè)y=kx+b,
根據(jù)函數(shù)圖象可得: ,
解得: ,
∴y=﹣5x+200
(2)解:設(shè)每天獲利w元,
則w=(x﹣12)y=﹣5x2+260x﹣2400=﹣5(x﹣26)2+980,
∴當(dāng)x=26時,w最大,最大利潤為980元
(3)解:設(shè)“十一”假期每天利潤為P元,
則P=(0.8x﹣12)y(1+200%)=﹣12x2+660x﹣7200=﹣12(x﹣ )2+1875,
∴當(dāng)x= 時,P最大,
此時售價為0.8× =22,
答:“十一”假期該紀(jì)念品打八折后售價為22元
【解析】(1)根據(jù)函數(shù)圖象中兩個點的坐標(biāo),利用待定系數(shù)法求解可得;(2)根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析,利用二次函數(shù)的性質(zhì)可得最值情況;(3)根據(jù)(2)中相等關(guān)系列出函數(shù)解析式,由二次函數(shù)的性質(zhì)求解可得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an} 滿足a1= ,a2= ,an+2﹣an+1=(﹣1)n+1(an+1﹣an)(n∈N*),數(shù)列{an}的前n項和為Sn , 則S2017= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB經(jīng)過平移得到線段A′B′,其中點A,B的對應(yīng)點分別為點A′,B′,這四個點都在格點上,則這四個點組成的四邊形ABB′A′的面積是( )
A.4
B.6
C.9
D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點H與點A重合時,EF=2 .
以上結(jié)論中,你認(rèn)為正確的有 . (填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.
(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是 .
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個函數(shù)圖象經(jīng)過(1,﹣4),(2,﹣2)兩點,在自變量x的某個取值范圍內(nèi),都有函數(shù)值y隨x的增大而減小,則符合上述條件的函數(shù)可能是( )
A.正比例函數(shù)
B.一次函數(shù)
C.反比例函數(shù)
D.二次函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣4sinαx+2=0有兩個等根,則銳角α的度數(shù)是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中結(jié)論正確的個數(shù)為( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com