如圖,在平面直角坐標(biāo)系中,一拋物線的對(duì)稱軸為直線,與y軸負(fù)半軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)坐標(biāo)為(0,-3).
⑴求此拋物線的解析式;
⑵若點(diǎn)G(2,-3)是該拋物線上一點(diǎn),點(diǎn)E是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△AEG的面積最大?求出此時(shí)E點(diǎn)的坐標(biāo)和△AEG的最大面積.
⑶若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
解: (1)
(2)當(dāng)E運(yùn)動(dòng)到時(shí)有最大面積,最大面積是,理由如下:
過E作EF⊥X軸于F,過G作GH⊥X軸于H 設(shè)E(),則F(),EF=-()
因?yàn)镚(2,-3)所以GH=3.
,,
所以
當(dāng)時(shí),有最大值為
將代入得所以E
|
(3) 存在,Q(1,0)或()或()
理由:因?yàn)镸N平行與x軸,所以M、N關(guān)于x=1對(duì)稱
ⅰ若NQ=QM,則Q必在MN的中垂線即對(duì)稱軸x=1上,所以Q(1,0)
ⅱ若QN=MN,則∠QMN=90°,
設(shè),
MN==
QN=,所以=,其中
同理若 QM=MN,QM=,,綜上可得=
解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com