【題目】某餐廳共有10名員工,所有員工工資的情況如下表:

請解答下列問題:

(1)餐廳所有員工的平均工資是多少?

(2)所有員工工資的中位數(shù)是多少?

(3)用平均數(shù)還是中位數(shù)描述該餐廳員工工資的一般水平比較恰當?

(4)去掉經(jīng)理和廚師甲的工資后,其他員工的平均工資是多少?它是否能反映餐廳員工工資的一般水平?

【答案】(1)平均工資為4350元;(2)工資的中位數(shù)為2000元;(3)由(1)(2)可知,用中位數(shù)描述該餐廳員工工資的一般水平比較恰當;(4)去掉經(jīng)理和廚師甲的工資后,其他員工的平均工資是2062.5元,和(3)的結果相比較,能反映餐廳員工工資的一般水平.

【解析】試題分析:(1)根據(jù)加權平均數(shù)的定義即可得到結論;
(2)根據(jù)中位數(shù)的定義即可得到結論;

(3)中位數(shù)描述該餐廳員工工資的一般水平比較恰當;
(4)由平均數(shù)的定義即可得到結論.

試題解析:(1)平均工資為(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;
(2)工資的中位數(shù)為=2000元;

(3)由(1)可知,用中位數(shù)描述該餐廳員工工資的一般水平比較恰當;
(4)去掉店長和廚師甲的工資后,其他員工的平均工資是2062.5元,和(2)的結果相比較,能反映餐廳員工工資的一般水平.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角板ABC的斜邊AB=12 cm,A=30°,將三角板ABC繞點C順時針旋轉90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使點B′落在原三角板ABC的斜邊AB上,則三角板A′B′C′平移的距離為(  )

A. 6 cm B. 4 cm

C. (6-2)cm D. (4-6)cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,一條直線經(jīng)過點A(1,3)和B(2,5).求:
(1)這個一次函數(shù)的解析式.
(2)當x=﹣3時,y的值.
(3)求此一次函數(shù)與x軸、y軸的交點坐標及其圖像與兩坐標軸圍成的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、﹣2、﹣3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片.
(1)求小芳抽到負數(shù)的概率;
(2)若小明再從剩余的三張卡片中隨機抽取一張,請你用樹狀圖或列表法,求小明和小芳兩人均抽到負數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù) (k≠0)在第一象限內的圖像經(jīng)過點D、E,且tan∠BOA=

(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖像與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求線段OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c,OA=OC,下列關系中正確的是( )

A.ac+1=b
B.ab+1=c
C.bc+1=a
D.
+1=c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】11·西寧)(本小題滿分7分)給出三個整式a2,b22ab

1)當a3,b4時,求a2b22ab的值;

2)在上面的三個整式中任意選擇兩個整式進行加法或減法運算,使所得的多項式能夠因式分解.請寫也你所選的式子及因式分解的過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A、B兩點,則圖中使反比例函數(shù)的值小于一次函數(shù)的值的x的取值范圍是(
A.x<﹣1
B.x>2
C.﹣1<x<0,或x>2
D.x<﹣1,或0<x<2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應用:已知正方形ABCD的邊長為4,點PAD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________

查看答案和解析>>

同步練習冊答案