精英家教網(wǎng)如圖,在半徑為5的⊙O中,如果弦AB的長為8,那么它的弦心距OC等于( 。
A、2B、3C、4D、6
分析:連接OA,根據(jù)垂徑定理及勾股定理解答即可.
解答:精英家教網(wǎng)解:連接OA,在Rt△OAC中,OA=5,AC=4,
根據(jù)勾股定理可得,OC=
OA2-AC2
=
52-42
=3.
故選B.
點(diǎn)評(píng):此題涉及圓中求半徑的問題,此類在圓中涉及弦長、半徑、圓心角的計(jì)算的問題,常把半弦長,半徑,圓心到弦的距離轉(zhuǎn)換到同一直角三角形中,然后通過勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內(nèi)接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個(gè),但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)作一個(gè)內(nèi)接正方形,然后作這個(gè)正方形的內(nèi)切圓,又在這個(gè)內(nèi)切圓中作內(nèi)接正方形,依此作到第n個(gè)內(nèi)切圓,它的半徑是( 。
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在半徑為2的⊙O中,弦AB的長為2
3
,則∠AOB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•上海模擬)如圖,在半徑為1的扇形AOB中,∠AOB=90°,點(diǎn)P是
AB
上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),PC⊥OA,PD⊥OB,垂足分別為點(diǎn)C、D,點(diǎn)E、F、G、H分別是線段OD、PD、PC、OC的中點(diǎn),EF與DG相交于點(diǎn)M,HG與EC相交于點(diǎn)N,聯(lián)結(jié)MN.如果設(shè)OC=x,MN=y,那么y關(guān)于x的函數(shù)解析式及函數(shù)定義域?yàn)?!--BA-->
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步練習(xí)冊(cè)答案