如圖,四邊形ABCD是邊長為3的正方形,長方形AEFG的寬AE=,長EF=.將長方形AEFG繞點A順時針旋轉15°得到長方形AMNH(如圖),這時BD與MN相交于點O.
(1)求∠DOM的度數(shù);
(2)在圖中,求D、N兩點間的距離;
(3)若把長方形AMNH繞點A再順時針旋轉15°得到長方形ARTZ,請問此時點B在矩形ARTZ的內部、外部、還是邊上?并說明理由.
【答案】分析:(1)由旋轉的性質,可得∠BAM=15°,即可得∠OKB=∠AOM=75°,又由正方形的性質,可得∠ABD=45°,然后利用外角的性質,即可求得∠DOM的度數(shù);
(2)首先連接AM,交BD于I,連接AN,由特殊角的三角函數(shù)值,求得∠HAN=30°,又由旋轉的性質,即可求得∠DAN=45°,即可證得A,C,N共線,然后由股定理求得答案;
(3)在Rt△ARK中,利用三角函數(shù)即可求得AK的值,與AB比較大小,即可確定B的位置.
解答:解:(1)根據(jù)題意得:∠BAM=15°,
∵四邊形AMNH是矩形,
∴∠M=90°,
∴∠AKM=90°-∠BAM=75°,
∴∠BKO=∠AKM=75°,
∵四邊形ABCD是正方形,
∴∠ABD=45°,
∴∠DOM=∠BKO+∠ABD=75°+45°=120°;

(2)連接AN,交BD于I,連接DN,
∵NH=,AH=,∠H=90°,
∴tan∠HAN==,
∴∠HAN=30°,
∴AN=2NH=7,
由旋轉的性質:∠DAH=15°,
∴∠DAN=45°,
∵∠DAC=45°,
∴A,C,N共線,
∵四邊形ABCD是正方形,
∴BD⊥AC,
∵AD=CD=3,
∴DI=AI=AC==3,
∴NI=AN-AI=7-3=4,
在Rt△DIN中,DN==5;

(3)點B在矩形ARTZ的外部.
理由:如圖,根據(jù)題意得:∠BAR=15°+15°=30°,
∵∠R=90°,AR=,
∴AK===
∵AB=3,
∴點B在矩形ARTZ的外部.
點評:此題考查了旋轉的性質、正方形的性質、矩形的性質、勾股定理以及特殊角的三角函數(shù)問題.此題難度較大,注意數(shù)形結合思想的應用,注意準確作出輔助線是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案