已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,-2),且與兩條坐標(biāo)軸圍成三角形的面積是4,試求一次函數(shù)的解析式.
【答案】分析:由一次函數(shù)過(guò)(0,-2),設(shè)出一次函數(shù)解析式為y=kx-2(k≠0),令y=0求出對(duì)應(yīng)的x的值,表示出一次函數(shù)與x軸交點(diǎn)的橫坐標(biāo),利用直角三角形面積等于兩直角邊乘積的一半表示出圍成三角形的面積,根據(jù)已知的面積為4列出關(guān)于k的方程,求出方程的解得到k的值,即可確定出一次函數(shù)解析式.
解答:解:根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示:

由一次函數(shù)過(guò)(0,-2),設(shè)一次函數(shù)解析式為y=kx-2(k≠0),
令y=0,解得:x=,
又一次函數(shù)與兩坐標(biāo)軸圍成的三角形面積為4,
×|-2|×||=4,即|k|=,
解得:k=±,
則一次函數(shù)解析式為y=x-2或y=-x-2.
點(diǎn)評(píng):此題考查了利用待定系數(shù)法求一次函數(shù)解析式,坐標(biāo)與圖形性質(zhì),以及一次函數(shù)與坐標(biāo)軸的交點(diǎn),靈活運(yùn)用待定系數(shù)法是解本題的關(guān)鍵.同時(shí)注意本題有兩解,做題時(shí)不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某通信器材公司銷(xiāo)售一種市場(chǎng)需求較大的新型通訊產(chǎn)品.已知每件產(chǎn)品的進(jìn)價(jià)為40元,每年銷(xiāo)售該種產(chǎn)品的總開(kāi)支(不含進(jìn)價(jià))總計(jì)120萬(wàn)元.在銷(xiāo)售過(guò)程中發(fā)現(xiàn),年銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間存在著一次函數(shù)關(guān)系y=
1
20k
x+b
,其中整數(shù)k使式子
k+1
+
1-k
有意義.經(jīng)測(cè)算,銷(xiāo)售單價(jià)60元時(shí),年銷(xiāo)售量為50000件.
(1)求出這個(gè)函數(shù)關(guān)系式;
(2)試寫(xiě)出該公司銷(xiāo)售該種產(chǎn)品的年獲利z(萬(wàn)元)關(guān)于銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式(年獲利=年銷(xiāo)售額-年銷(xiāo)售產(chǎn)品總進(jìn)價(jià)-年總開(kāi)支).當(dāng)銷(xiāo)售單價(jià)x為何值時(shí),年獲利最大并求這個(gè)最大值;
(3)若公司希望該種產(chǎn)品一年的銷(xiāo)售獲利不低于40萬(wàn)元,借助(2)中函數(shù)的圖象,請(qǐng)你幫助該公司確定銷(xiāo)售單價(jià)的范圍.在此情況下,要使產(chǎn)品銷(xiāo)售量最大,你認(rèn)為銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)正比例函數(shù)和一個(gè)一次函數(shù),它們的圖象都經(jīng)過(guò)點(diǎn)P(-3,3),且一次函數(shù)的圖象經(jīng)與y軸相交于點(diǎn)Q(0,-2),求這兩個(gè)函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一個(gè)正比例函數(shù)和一個(gè)一次函數(shù),它們的圖象都經(jīng)過(guò)點(diǎn)P(-3,3),且一次函數(shù)的圖象經(jīng)與y軸相交于點(diǎn)Q(0,-2),求這兩個(gè)函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

先閱讀,然后解決問(wèn)題:

已知:一次函數(shù)和反比例函數(shù),求這兩個(gè)函數(shù)圖象在同一坐標(biāo)系內(nèi)的交點(diǎn)坐標(biāo)。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個(gè)方程得:x1=-2  x2=4

經(jīng)檢驗(yàn),x1=-2 x2=4是原方程的根

當(dāng)x1=-2,y1=4;x2=4,y2=-2

∴交點(diǎn)坐標(biāo)為(-2,4)和(4,-2)

問(wèn)題:

1.在同一直角坐標(biāo)系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點(diǎn)坐標(biāo);

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標(biāo)系內(nèi)有無(wú)交點(diǎn),說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省九年級(jí)上學(xué)期期中數(shù)學(xué)卷 題型:解答題

先閱讀,然后解決問(wèn)題:

已知:一次函數(shù)和反比例函數(shù),求這兩個(gè)函數(shù)圖象在同一坐標(biāo)系內(nèi)的交點(diǎn)坐標(biāo)。

解:解方程-x+2=

   去分母,得

-x2+2x=-8

整理得

x2-2x-8=0

解這個(gè)方程得:x1=-2  x2=4

經(jīng)檢驗(yàn),x1=-2 x2=4是原方程的根

當(dāng)x1=-2,y1=4;x2=4,y2=-2

∴交點(diǎn)坐標(biāo)為(-2,4)和(4,-2)

問(wèn)題:

1.在同一直角坐標(biāo)系內(nèi),求反比例函數(shù)y=的圖象與一次函數(shù)y=x+3的圖象的交點(diǎn)坐標(biāo);

2.判斷一次函數(shù)y=2x-3的圖象與反比例函數(shù)y=-的圖象在同一直角坐標(biāo)系內(nèi)有無(wú)交點(diǎn),說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案