精英家教網如圖,直線AB與⊙O相切于點A,⊙O的半徑為2,若∠OBA=30°,則OB的長為( 。
A、4
3
B、4
C、2
3
D、2
分析:由于直線AB與⊙O相切于點A,則∠OAB=90°,而OA=2,∠OBA=30°,根據(jù)三角函數(shù)定義即可求出OB.
解答:解:∵直線AB與⊙O相切于點A,
則∠OAB=90°.
∵OA=2,
∴OB=
OA
sinB
=
OA
sin30°
=
2
1
2
=4.
故選B.
點評:本題主要利用了切線的性質和銳角三角函數(shù)的概念解直角三角形問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,直線AB與⊙O相切于點B,BC是⊙O的直徑,AC交⊙O于點D,連接BD,則圖中直角三角形有
3
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD,∠AOD=40°.求:∠POB,∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與x軸、y軸分別交于點A、B,點A的坐標是(2,0),∠ABO=30°.在坐標平面內,是否存在點P(除點O外),使得△APB與△AOB全等.請寫出所有符合條件的點P的坐標
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3
(0,0)或(2,2
3
)或(-1,
3
)或(3,
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與CD相交于O點,∠AOE=∠DOF=90°,OP是∠BOC的平分線,其中∠AOD=40°,則∠EOP的度數(shù)為 ( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB與直線CD相交于點O,OE⊥AB,垂足為O,若∠AOC=65°,則∠DOE的度數(shù)是
25°
25°

查看答案和解析>>

同步練習冊答案