【題目】如圖,E□ABCD的邊BC延長線上一點,AECD于點FFGADAB于點G

1)填空:圖中與CEF相似的三角形有__________;(寫出圖中與CEF相似的所有三角形

2)從(1)中選出一個三角形,并證明它與CEF相似

【答案】ADF,EBAFGA;

【解析】試題分析:(1)由四邊形ABCD是平行四邊形,可得AB∥CD,AD∥BC,平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似,即可得;

(2)根據(jù)∠DAF=∠E,∠FCE=∠D,即可證明△ADF∽△ECF.

試題解析:(1)△ADF,△EBA,△FGA

2△ADF∽△ECF,

∵四邊形ABCD為平行四邊形,

∴BE∥AD ,

∴∠DAF=∠E,∠FCE=∠D,

∴△ADF∽△ECF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,BAC+EAD=180°,ABC不動,△ADE繞點A旋轉(zhuǎn),連接BE,CD,F(xiàn)BE的中點,連接AF.

(1)如圖①,當(dāng)∠BAE=90°時,求證:CD=2AF;

(2)當(dāng)∠BAE≠90°時,(1)的結(jié)論是否成立?請結(jié)合圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陰影部分是邊長是的大正方形剪去一個邊長是的小正方形后所得到的圖形,將陰影部分通過割、拼,形成新的圖形,給出下列3幅圖割拼方法中,其中能夠驗證平方差公式有___________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸于點、點,交軸于點C,且SABC=6.

1)求兩點的坐標(biāo);

2)求ABC的外接圓與拋物線的對稱軸的交點坐標(biāo);

3)點E為拋物線上的一動點(點異于,且在對稱軸右側(cè)),直線交對稱軸于N

直線BE交對稱軸于,對稱軸交軸于,試確定、 的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,且ADBD,EAC的中點,AD6cm,BD8cm,BC16cm,則DE的長為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某小組同學(xué)為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度(精確到0.1米)

(參考數(shù)據(jù):sin10°≈0.17 cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1

1)在方格紙中畫ABC,使AB=,AC=,BC=4;

2)請你用所學(xué)的知識驗證所畫的ABC是不是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商鋪進行維修,若請甲、乙兩名工人同時施工,天可以完成,共需支付兩人工資元,若先請甲工人單獨做天,再請乙工人單獨做天也可完成,共需付給兩人工資

甲、乙工人單獨工作一天,商鋪應(yīng)分別支付多少工資?

單獨請哪名工人完成,商鋪支付維修費用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各式因式分解

(1)a(a-3)+2(3-a)

(2)

(3)

(4)

查看答案和解析>>

同步練習(xí)冊答案