已知等邊△ABC底邊AB邊上的高為5cm,則AC邊上的角平分線(xiàn)為_(kāi)_______.

5
分析:利用等邊三角形的性質(zhì)直接寫(xiě)出答案即可.
解答:∵△ABC是等邊三角形,
∴△ABC各邊上的高的長(zhǎng)=各邊上的中線(xiàn)=各角的平分線(xiàn)的長(zhǎng),
∴AC邊上的角平分線(xiàn)為5,
故答案為:5
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),解題的關(guān)鍵是弄清其三線(xiàn)合一的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,已知等邊△ABC和等邊△DBC有公共的底邊BC.

(1)以圖1中的某個(gè)點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC,就能使△DBC與△ABC重合,則滿(mǎn)足題意的點(diǎn)為
B點(diǎn)、C點(diǎn)、BC的中點(diǎn)
;(寫(xiě)出所有的這種點(diǎn))
(2)如圖2,已知B1是BC的中點(diǎn),現(xiàn)沿著由點(diǎn)B到點(diǎn)B1的方向,將△DBC平移到△D1B1C1的位置.請(qǐng)你判斷:得到的四邊形ABD1C1是平行四邊形嗎?說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點(diǎn),點(diǎn)P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h
,∴r1+r2=h(定值).
(1)類(lèi)比與推理
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點(diǎn)”放寬為“在三角形內(nèi)任一點(diǎn)”,即:已知等邊△ABC內(nèi)任意一點(diǎn)P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(2)理解與應(yīng)用
△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC內(nèi)部是否存在一點(diǎn)O,點(diǎn)O到各邊的距離相等?
 
(填“存在”或“不存在”),若存在,請(qǐng)直接寫(xiě)出這個(gè)距離r的值,r=
 
.若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點(diǎn),點(diǎn)P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E為對(duì)角線(xiàn)BD上的一點(diǎn),且BE=BC,F(xiàn)為CE上一點(diǎn),F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試?yán)蒙鲜鼋Y(jié)論求出FM+FN的長(zhǎng).
(2)類(lèi)比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點(diǎn)”放寬為“在三角形內(nèi)任一點(diǎn)”,即:
已知等邊△ABC內(nèi)任意一點(diǎn)P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點(diǎn)P到各邊的距離為r1r2…rn,請(qǐng)問(wèn)r1+r2+…+rn是否為定值?如果是,請(qǐng)合理猜測(cè)出這個(gè)定值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列圖中,已知等邊△ABC和等邊△DBC有公共的底邊BC

(1)以圖(1)中的某個(gè)點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC與△ABC重合,則旋轉(zhuǎn)中心為
B點(diǎn)、C點(diǎn)、BC的中點(diǎn)
B點(diǎn)、C點(diǎn)、BC的中點(diǎn)
(寫(xiě)出所有滿(mǎn)足條件的點(diǎn))
(2)如圖(2),已知B1是BC的中點(diǎn),現(xiàn)沿著由B到B1的方向,將△DBC平移到△D1B1C1的位置,連接AC1,BD1得到的四邊形ABD1C1是什么特殊四邊形?說(shuō)明你的理由.
(3)在四邊形ABD1C1中有
3
3
對(duì)全等三角形,請(qǐng)你選出其中一對(duì)進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案