【題目】已知該拋物線y=x2+bx+c,經(jīng)過點B(-4,0)和點A(1,0)與y軸交于點C.

(1)確定拋物線的表達式,并求出C點坐標;

(2)如圖1,經(jīng)過點B的直線l交拋物線于點E,且滿足∠EBO=∠ACB,求出所有滿足條件的點E的坐標,并說明理由;

(3)如圖2,M,N是拋物線上的兩動點(點M在左,點N在右),分別過點M,N作PM∥x軸,PN∥y軸,PM,PN交于點P.點M,N運動時,且始終保持MN=不變,當△MNP的面積最大時,請直接寫出直線MN的表達式.

【答案】(1)y=x2+3x-4,C點坐標為(0,-4);(2)E1,),E2(-,-);(3)y=x-4y=-x-

【解析】

試題分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對應關系,可得答案;

(2)根據(jù)勾股定理,可得BC的長,根據(jù)等角的正切值相等,可得HO的長,根據(jù)待定系數(shù)法,可得BE的解析式,根據(jù)解方程組,可得E點坐標;

(3)由題意△PMN是等腰直角三角形,得PM=PN=1,設M(a,a2+3a-4)則N(a+1,a2+3a+1)或(a+1,a2+3a-5),代入拋物線的解析式即可求解.

試題解析:(1)y=x2+bx+c,經(jīng)過點B(-4,0)和點A(1,0),得

,解得,

拋物線的解析式為y=x2+3x-4,

當x=0時,y=-4,

C點坐標為(0,-4);

(2)如圖:

由題意,得OB=OC=4,BC=4,

設l1與y軸交于點H,過A作AD⊥BC于點D,△ADB是等腰直角三角形,.

∵AD=BD=ABsin45°=,CD=,∠ACB=

∵∠ACB=∠EBA,

∴HO=,H(0,),

設直線l1的解析式為y=kx+b,將B、C點坐標代入,得

k=,

l1的解析式為y=x+

聯(lián)立拋物線與l1,得x+=x2+3x-4,

解得x=,E1,);

同理l2:y=-x-,

-x-=x2+3x-4,

解得x=-,E2(-,-),

綜上所述:E1,),E2(-,-);

(3)∵△PMN是直角三角形,斜邊MN=,

∴當△PMN面積最大時,△PMN是等腰直角三角形,PM=PN=1,

由題意設M(a,a2+3a-4)則N(a+1,a2+3a-3)或(a+1,a2+3a-5),

∴a2+3a-3=(a+1)2+3(a+1)-4或a2+3a-5=(a+1)2+3(a+1)-4,

∴a=0或-

①當a=0時,M(0,-4),N(1,-3),設直線MN為y=kx+b,則,解得,所以直線MN為y=x-4.

②當a=-時,M(-,-),N(-,-),

設直線MN為y=k′x+b′,則解得,

所以直線MN為y=-x-

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形的兩邊長分別為36,則這個等腰三角形的周長為( )

A. 12 B. 15 C. 1215 D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列式計算

(1)-個數(shù)與-5的差為-8,求這個數(shù);

(2)-個數(shù)與9的差為-5,求這個數(shù).

(3)溫度由-9℃上升了3℃后的溫度是多少?

(4)甲地的海拔是-63米,乙地比甲地高24米,則乙地的海拔為多少?

(5)土星表面夜間的平均氣溫為-150℃,白天的平均氣溫比夜間高27℃,那么白天的平均氣溫是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺為了解觀眾對“跑男”綜藝節(jié)目的喜愛情況,隨機抽取某社區(qū)部分觀眾,進行問卷調(diào)查,整理繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:

請根據(jù)以上信息,解答下列問題:

(1)求被調(diào)查的男觀眾中,表示“不喜歡”的男觀眾所占的百分比是多少?

(2)求這次調(diào)查的女觀眾人數(shù),并直接補全條形統(tǒng)計圖.

(3)在扇形統(tǒng)計圖中,“一般”所對應的圓心角為 度.

(4)若該社區(qū)有女觀眾約1000人,估計該社區(qū)女觀眾喜歡看“跑男”綜藝節(jié)目的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一組數(shù)據(jù)為88,96,109,109,122,141,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( 。

A. 122,109 B. 109,122 C. 109,109 D. 141,109

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程ax2﹣2x+1=0有實數(shù)根,則a的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.

1求證:CE=CF.

(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線相交于點E,∠ADC=60°.

(1)求證:△ADE是等腰三角形;

(2)若AD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在操場上練習雙杠,他發(fā)現(xiàn)雙杠兩橫杠在地面上的影子的關系是____

查看答案和解析>>

同步練習冊答案