已知拋物線y=x2-2ax+a2 (a為常數(shù),a>0),G為該拋物線的頂點(diǎn).
(1)如圖1,當(dāng)a=2時(shí),拋物線與y軸交于點(diǎn)M,求△GOM的面積;
(2)如圖2,將拋物線繞頂點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°,所得新圖象與y軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),D為x軸的正半軸上一點(diǎn),以O(shè)D為一對角線作平行四邊形OQDE,其中Q點(diǎn)在第一象限.QE交OD于點(diǎn)C,若QO平分∠AQC,AQ=2QC.
①求證:△AQO≌△EQO;
②若QD=OG,試求a的值.

【答案】分析:(1)先求出點(diǎn)M的坐標(biāo),再把拋物線解析式整理成頂點(diǎn)式形式,然后求出點(diǎn)G的坐標(biāo),從而得到OM、OG,然后根據(jù)三角形的面積公式列式計(jì)算即可得解;
(2)①根據(jù)平行四邊形的對角線互相平分可得OC=CE=QE,然后求出AQ=EQ,再根據(jù)角平分線的定義可得∠AQO=∠EQO,然后利用“邊角邊”證明△AQO和△EQO全等;
②根據(jù)平行四邊形的對邊相等可得OE=QD,再根據(jù)全等三角形對應(yīng)邊相等可得OA=OE,從而得到點(diǎn)A的坐標(biāo),再根據(jù)旋轉(zhuǎn)的性質(zhì)求出點(diǎn)A旋轉(zhuǎn)前的坐標(biāo),然后代入拋物線解析式進(jìn)行計(jì)算即可求出a的值.
解答:解:(1)當(dāng)a=2時(shí),令x=0,則y=a2=4,
∴點(diǎn)M(0,4),
∵y=x2-2ax+a2=(x-a)2,
∴當(dāng)a=2時(shí),頂點(diǎn)G(2,0),
∴OM=4,OG=2,
S△GOM=OM•OG=×4×2=4;

(2)①∵四邊形OQDE為平行四邊形,
∴OC=CE=QE,
又∵AQ=2QC,
∴AQ=EQ,
∵QO平分∠AQC,
∴∠AQO=∠EQO,
∵在△AQO和△EQO中,
,
∴△AQO≌△EQO(SAS);

②∵由題意知G(a,0),
∴OG=a,
∵QD=OG,
∴QD=a,
∵四邊形OQDE為平行四邊形,
∴OE=QD=a,
又∵△AOQ≌△EOQ,
∴OA=OE=a,
即A(0,a),
由旋轉(zhuǎn)知,旋轉(zhuǎn)前拋物線點(diǎn)A的坐標(biāo)為(2a,a),
把(2a,a)代入y=x2-2ax+a2得,4a2-2a•a+a2=a,
即a2=a,
解得a=1或0,
∵a為常數(shù),a>0
∴a=0不合題意,舍去,
∴a=1.
點(diǎn)評:本題是二次函數(shù)綜合題型,主要考查了二次函數(shù)與y軸的交點(diǎn)的求解,頂點(diǎn)坐標(biāo),全等三角形的判定與性質(zhì),平行四邊形的對邊相等,以及旋轉(zhuǎn)的性質(zhì),(2)中求出點(diǎn)A的坐標(biāo)以及旋轉(zhuǎn)前的坐標(biāo)是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊答案