(2007•廈門)已知拋物線的函數(shù)關(guān)系式:y=x2+2(a-1)x+a2-2a(其中x是自變量),
(1)若點(diǎn)P(2,3)在此拋物線上,
①求a的值;
②若a>0,且一次函數(shù)y=kx+b的圖象與此拋物線沒有交點(diǎn),請(qǐng)你寫出一個(gè)符合條件的一次函數(shù)關(guān)系式(只需寫一個(gè),不要寫過程);
(2)設(shè)此拋物線與軸交于點(diǎn)A(x1,0)、B(x2,0).若x1<x2,且拋物線的頂點(diǎn)在直線x=的右側(cè),求a的取值范圍.
【答案】分析:(1)①將P點(diǎn)坐標(biāo)代入拋物線的解析式中即可求出a的值.
②可根據(jù)①得出的a的值求出拋物線的解析式,然后根據(jù)拋物線的解析式即可寫出符合條件的一次函數(shù)關(guān)系式.
(2)本題可從兩方面考慮:
①根據(jù)x1<x2,以及拋物線的開口向上可得出當(dāng)x=時(shí),函數(shù)值必小于0,由此可得出一個(gè)a的取值范圍.
②由于拋物線的頂點(diǎn)在直線x=的右側(cè),也就是說拋物線的對(duì)稱軸在x=的右側(cè),由此可得出另一個(gè)a的取值范圍.結(jié)合兩種情況即可求出a的取值范圍.
解答:解:(1)將P(2,3)代入y=x2+2(a-1)x+a2-2a
得a2+2a-3=0,(a+3)(a-1)=0
∴a=-3或a=1
②∵a>0,
∴由(1)知a=1,原函數(shù)化簡(jiǎn)為y=x2-1,
故與此拋物線無交點(diǎn)的直線可以是y=x-2.

(2)∵頂點(diǎn)在x=右側(cè),即對(duì)稱軸(1-a)在的右側(cè),
∴1-a>
∴a<
①由于x1<x2;
∴拋物線在自變量取時(shí),
∵變量必小于0.
∴3+2(a-1)+a2-2a<0;
解得-<a<2-
∵x=-(a-1)>,即a<;
∴-<a<
點(diǎn)評(píng):本題主要考查了二次函數(shù)的相關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•廈門)已知拋物線的函數(shù)關(guān)系式:y=x2+2(a-1)x+a2-2a(其中x是自變量),
(1)若點(diǎn)P(2,3)在此拋物線上,
①求a的值;
②若a>0,且一次函數(shù)y=kx+b的圖象與此拋物線沒有交點(diǎn),請(qǐng)你寫出一個(gè)符合條件的一次函數(shù)關(guān)系式(只需寫一個(gè),不要寫過程);
(2)設(shè)此拋物線與軸交于點(diǎn)A(x1,0)、B(x2,0).若x1<x2,且拋物線的頂點(diǎn)在直線x=的右側(cè),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2007•廈門)已知:如圖,在△ABC中,D是AB邊上的一點(diǎn),BD>AD,∠A=∠ACD,
(1)若∠A=∠B=30°,BD=,求CB的長(zhǎng);
(2)過D作∠CDB的平分線DF交CB于F,若線段AC沿著AB方向平移,當(dāng)點(diǎn)A移到點(diǎn)D時(shí),判斷線段AC的中點(diǎn)E能否移到DF上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2007•廈門)已知:如圖,AB是⊙O的弦,點(diǎn)C在上.
(1)若∠OAB=35°,求∠AOB的度數(shù);
(2)過點(diǎn)C作CD∥AB,若CD是⊙O的切線,求證:點(diǎn)C是的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2007•廈門)已知:如圖,在△ABC中,D是AB邊上的一點(diǎn),BD>AD,∠A=∠ACD,
(1)若∠A=∠B=30°,BD=,求CB的長(zhǎng);
(2)過D作∠CDB的平分線DF交CB于F,若線段AC沿著AB方向平移,當(dāng)點(diǎn)A移到點(diǎn)D時(shí),判斷線段AC的中點(diǎn)E能否移到DF上,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案