數(shù)軸上與-2的距離等于4個(gè)單位的點(diǎn)表示的數(shù)是


  1. A.
    4
  2. B.
    -4
  3. C.
    2
  4. D.
    2和-6
D
分析:此題注意考慮兩種情況:①該點(diǎn)在-2的左側(cè),②該點(diǎn)在-2的右側(cè).
解答:根據(jù)數(shù)軸的意義可知,若該點(diǎn)在-2的左側(cè),則這個(gè)數(shù)為-6;
②若該點(diǎn)在-2的右側(cè),這個(gè)數(shù)為2.
故選D.
點(diǎn)評(píng):此題考查了數(shù)軸的知識(shí),解答本題的關(guān)鍵是分類討論,不要漏解,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開(kāi)始,在無(wú)滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.
解答下列問(wèn)題:(各小問(wèn)結(jié)果保留π)
(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為
2
2
;位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是
相切
相切
;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為
π+2
π+2
;
(3)求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,數(shù)軸上有一個(gè)等邊△AOC,點(diǎn)O與原點(diǎn)重合,點(diǎn)A與表示-5的點(diǎn)重合,△AOC經(jīng)過(guò)平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿?cái)?shù)軸向右平移得到△OBD,則平移的距離是
5
5
個(gè)單位長(zhǎng)度;△AOC與△BOD關(guān)于直線對(duì)稱,則對(duì)稱軸是
線段AB的垂直平分線(或∠COD的角平分線所在的直線等等)
線段AB的垂直平分線(或∠COD的角平分線所在的直線等等)
;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度至少是
120°
120°
度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開(kāi)始,在無(wú)滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.
解答下列問(wèn)題:(各小問(wèn)結(jié)果保留π)
(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為   ;
位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是     ;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;
(3)求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河北省石家莊市九年級(jí)第一次模擬考試數(shù)學(xué)卷 題型:選擇題

(本小題滿分10分)

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開(kāi)始,在無(wú)滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.

解答下列問(wèn)題:(各小問(wèn)結(jié)果保留π)

(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為    ;

位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是      ;

(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   

(3)求OA的長(zhǎng).

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省鹽城市射陽(yáng)縣特庸中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開(kāi)始,在無(wú)滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點(diǎn)A,且此時(shí)△MPA為等邊三角形.
解答下列問(wèn)題:(各小問(wèn)結(jié)果保留π)
(1)位置Ⅰ中的點(diǎn)O到直線MN的距離為_(kāi)_____;位置Ⅱ中的半⊙P與數(shù)軸的位置關(guān)系是______;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為_(kāi)_____;
(3)求OA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案