如圖,一次函數(shù)y=kx+n的圖象與x軸和y軸分別交于點A(6,0)和B(0,),線段AB的垂直平分線交x軸于點C,交AB于點D.

(1)試確定這個一次函數(shù)解析式;(3分)
(2)求過A、B、C三點的拋物線的函數(shù)關(guān)系式;(6分)
(3)請你利用所求拋物線的圖像回答:當(dāng)x取何值時,拋物線中的部分圖像落在x軸的上方? (3分)

(1);(2);(3).

解析試題分析:(1)根據(jù)A、B的坐標用待定系數(shù)法即可求出直線AB的解析式;(2)根據(jù)A、B的坐標求出AB的長,即可求出AD的值,然后在Rt△ACD中根據(jù)∠DAC的余弦值求出AC的長,即可求出OC的長也就能求出C點的坐標,然后用待定系數(shù)法求出拋物線的解析式;(3)由于拋物線開口向上,與x軸的交點為A,C,所以當(dāng)時,拋物線中的部分圖像落在x軸的上方.
試題解析:(1)∵一次函數(shù)的圖象與x軸和y軸分別交于點A(6,0)和B(0,),
,解得.
∴這個一次函數(shù)關(guān)系式為.
(2)根據(jù)A、B的坐標可得OA=6,OB=,∴AB=,∠BAO=30°.
∵CD是線段AB的垂直平分線,∴AD=.
在Rt△ACD中,AD=,∠BAO=30°,∴,OC=OA-AC="2." ∴C(2,0).
設(shè)拋物線的解析式為,將B點坐標代入后得:.
∴拋物線的解析式為:,即.
(3)當(dāng)時,拋物線中的部分圖像落在x軸的上方.
考點:1.二次函數(shù)綜合題;2.待定系數(shù)法;3.曲線上點的坐標與方程的關(guān)系;4.勾股定理;5.線段垂直平分線的性質(zhì);6.銳角三角函數(shù)定義;7.特殊角的三角函數(shù)值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)的圖象經(jīng)過點,,
(1)求此二次函數(shù)的關(guān)系式;
(2)求此二次函數(shù)圖象的頂點坐標;
(3)填空:把二次函數(shù)的圖象沿坐標軸方向最少平移  個單位,使得該圖象的頂點在原點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=x2-2kx+3k+4.
(1)頂點在y軸上時,k的值為_________.
(2)頂點在x軸上時,k的值為_________.
(3)拋物線經(jīng)過原點時,k的值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)圖象的頂點是(-1,2),且過點(0,).

(1)求二次函數(shù)的表達式,并在圖中畫出它的圖象;
(2)判斷點(2,)是否在該二次函數(shù)圖象上;并指出當(dāng)取何值時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線上有一點M(x0)位于軸下方.
(1)求證:此拋物線與x軸交于兩點;
(2)設(shè)此拋物線與軸的交點為A(,0),B(,0),且<,求證:<<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知方程有兩個不同的實數(shù)根,方程也有兩個不同的實數(shù)根,且其兩根介于方程的兩根之間,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與直線交于點A 、B,與y軸交于點C.

(1)求點A、B的坐標;
(2)若點P是直線x=1上一點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與y軸交于點C(0,-4),與x軸交于點A,B,且B點的坐標為(2,0)

(1)求該拋物線的解析式;
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標.

查看答案和解析>>

同步練習(xí)冊答案