如圖,已知平面直角坐標(biāo)系,A、B兩點(diǎn)的坐標(biāo)分別為A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x軸上的兩個(gè)動(dòng)點(diǎn),則當(dāng)a=
5
4
5
4
時(shí),四邊形ABDC的周長(zhǎng)最短.
分析:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,則A′的坐標(biāo)為(2,3),把A′向右平移3個(gè)單位得到點(diǎn)B'(5,3),連接BB′,與x軸交于點(diǎn)D,易得四邊形A′B′DC為平行四邊形,得到CA′=DB′=CA,則AC+BD=BB′,根據(jù)兩點(diǎn)之間線段最短得到此時(shí)AC+BD最小,即四邊形ABDC的周長(zhǎng)最短.然后用待定系數(shù)法求出直線BB′的解析式y(tǒng)=4x-17,易得D點(diǎn)坐標(biāo)為(
17
4
,0),則有a+3=
17
4
,即可求出a的值.
解答:解:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,則A′的坐標(biāo)為(2,3),把A′向右平移3個(gè)單位得到點(diǎn)B'(5,3),連接BB′,與x軸交于點(diǎn)D,如圖,
∴CA′=CA,
又∵C(a,0),D(a+3,0),
∴CD=3,
∴A′B′∥CD,
∴四邊形A′B′DC為平行四邊形,
∴CA′=DB′,
∴CA=DB′,
∴AC+BD=BB′,此時(shí)AC+BD最小,
而CD與AB的長(zhǎng)一定,
∴此時(shí)四邊形ABDC的周長(zhǎng)最短.
設(shè)直線BB′的解析式為y=kx+b,
把B(4,-1)、B'(5,3)分別代入得,
4k+b=-1,5k+b=3,
解得k=4,b=-17,
∴直線BB′的解析式為y=4x-17,
令y=0,則4x-17=0,
解得x=
17
4
,
∴D點(diǎn)坐標(biāo)為(
17
4
,0),
∴a+3=
17
4

∴a=
5
4

故答案為
5
4
點(diǎn)評(píng):本題考查了軸對(duì)稱-最短路線問(wèn)題:通過(guò)對(duì)稱,把兩條線段的和轉(zhuǎn)化為一條線段,利用兩點(diǎn)之間線段最短解決問(wèn)題.也考查了坐標(biāo)變換以及待定系數(shù)法求一次函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時(shí)x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆安徽滁州八年級(jí)下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐

標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過(guò)點(diǎn)D作直線=-交折線O-A-B于點(diǎn)E.

(1)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對(duì)稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

(3)問(wèn)題(2)中的四邊形DMEN中,ME的長(zhǎng)為_(kāi)___________.

    

 

查看答案和解析>>

同步練習(xí)冊(cè)答案