【題目】甲口袋中裝有2個相同的小球,它們分別寫有數(shù)字1和2;乙口袋中裝有3個相同的小球,它們分別寫有數(shù)字3,4和5,從兩個口袋中各隨機取出1個小球.用畫樹狀圖或列表的方法,求取出的2個小球上的數(shù)字之和為6的概率.

【答案】

解:畫樹狀圖得:


∵共有6種情況,取出的2個小球上的數(shù)字之和為6的有2種情況,
∴取出的2個小球上的數(shù)字之和為6的概率為:=


【解析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與取出的2個小球上的數(shù)字之和為6的情況,再利用概率公式即可求得答案.
【考點精析】本題主要考查了列表法與樹狀圖法和概率公式的相關知識點,需要掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).

(1)請畫出△A1B1C1 , 使△A1B1C1與△ABC關于x軸對稱;
(2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2 , 并直接寫出點B旋轉到點B2所經過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ繞點P旋轉,得到△PDE,點D落在線段PQ上.

(1)求證:PQ∥AB
(2)若點D在∠BAC的平分線上,求CP的長。
(3)若△PDE與△ABC重疊部分圖形的周長為T,且12≤T≤16,求x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點M從點A出發(fā),以每秒1個單位長度的速度沿AB向點B勻速運動;同時,動點N從點B出發(fā),以每秒3個單位長度的速度沿BA向點A勻速運動,過線段MN的中點G作邊AB的垂線,垂足為點G,交△ABC的另一邊于點P,連接PM,PN,當點N運動到點A時,M,N兩點同時停止運動,設運動時間為t秒.

(1)當t=秒時,動點M,N相遇
(2)設△PMN的面積為S,求S與t之間的函數(shù)關系式
(3)取線段PM的中點K,連接KA,KC,在整個運動過程中,△KAC的面積是否變化?若變化,直接寫出它的最大值和最小值;若不變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.

(1)試說明DF是⊙O的切線
(2)若AC=3AE,求tanC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(3,5)關于原點O的對稱點為點C,分別過點A,C作y軸的平行線,與反比例函數(shù)y=(0<k<15)的圖象交于點B,D,連接AD,BC,AD與x軸交于點E(﹣2,0).

(1)求k的值;
(2)直接寫出陰影部分面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的盒子中有三張卡片,卡片上面分別標有字母a,b,c,每張卡片除字母不同外其他都相同,小玲先從盒子中隨機抽出一張卡片,記下字母后放回并攪勻;再從盒子中隨機抽出一張卡片并記下字母,用畫樹狀圖(或列表)的方法,求小玲兩次抽出的卡片上的字母相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人民生活水平不斷提高,我市“初中生帶手機”現(xiàn)象也越來越多,為了了解家長對此現(xiàn)象的態(tài)度,某校數(shù)學課外活動小組隨機調查了若干名學生家長,并將調查結果進行統(tǒng)計,得出如下所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.

(1)這次調查的學生家長總人數(shù)為
(2)請補全條形統(tǒng)計圖,并求出持“很贊同”態(tài)度的學生家長占被調查總人數(shù)的百分比.
(3)求扇形統(tǒng)計圖中表示學生家長持“無所謂”態(tài)度的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若兩個扇形滿足弧長的比等于它們半徑的比,則這稱這兩個扇形相似.如圖,如果扇形AOB與扇形A101B1是相似扇形,且半徑OA:O1A1=k(k為不等于0的常數(shù)).那么下面四個結論:①∠AOB=∠A101B1;②△AOB∽△A101B1;③=k;④扇形AOB與扇形A101B1的面積之比為k2 . 成立的個數(shù)為(  )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案