【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點(diǎn)C與公路上的停靠站A的距離為300米,與公路上的另一?空B的距離為400米,且CA⊥CB,如圖所示.為了安全起見,爆破點(diǎn)C周圍半徑250米范圍內(nèi)不得進(jìn)入,問在進(jìn)行爆破時,公路AB段是否有危險?請用你學(xué)過的知識加以解答.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90,AB=6cm,BC=8cm.
(1)點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動,點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā).
①經(jīng)過幾秒,使△PBQ的面積等于8?
②線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能說明理由.
(2)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動,點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】讓圖中兩個轉(zhuǎn)盤分別自由轉(zhuǎn)動一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,兩個指針分別落在某兩個數(shù)所表示的區(qū)域,則這兩個數(shù)的和為________的概率最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個定點(diǎn),點(diǎn)B,D分別在AN,AM上,連接BD.
【發(fā)現(xiàn)】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請判斷△CBD的形狀,并證明你的結(jié)論;
【應(yīng)用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個數(shù)一共有 .(只填序號)
①2個②3個③4個④4個以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動,運(yùn)動時間為t秒,連結(jié)CQ.
(1)求出點(diǎn)C的坐標(biāo);
(2)若△OQC是等腰直角三角形,則t的值為________;
(3)若CQ平分△OAC的面積,求直線CQ對應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名工人分別加工a個同種零件.甲先加工一段時間,由于機(jī)器故障進(jìn)行維修后繼續(xù)按原來的工作效率進(jìn)行加工,當(dāng)甲加工小時后.乙開始加工,乙的工作效率是甲的工作效率的3倍.下圖分別表示甲、乙加工零件的數(shù)量y(個)與甲工作時間x(時)的函數(shù)圖象.解讀信息:
(1)甲的工作效率為 個/時,維修機(jī)器用了 小時
(2)乙的工作效率是 個/時;問題解決:
①乙加工多長時間與甲加工的零件數(shù)量相同,并求此時乙加工零件的個數(shù);
②若乙比甲早10分鐘完成任務(wù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價格為3元/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護(hù)消費(fèi)者利益,物價部門規(guī)定,該品牌粽子售價不能超過進(jìn)價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com