【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤ t≤3).

(1)用的代數(shù)式表示PC的長(zhǎng)度;
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?

【答案】
(1)BP=2t,則PC=BC﹣BP=6﹣2t;
(2)△BPD和△CQP全等
理由:∵t=1秒∴BP=CQ=2×1=2厘米,
∴CP=BC﹣BP=6﹣2=4厘米,
∵AB=8厘米,點(diǎn)D為AB的中點(diǎn),
∴BD=4厘米.
∴PC=BD,
在△BPD和△CQP中,
,
∴△BPD≌△CQP(SAS);
(3)解:∵點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,
∴BP≠CQ
又∵△BPD≌△CPQ,∠B=∠C,
∴BP=PC=3cm,CQ=BD=4cm,
∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t= = 秒,
∴VQ= = = 厘米/秒.
【解析】(1)根據(jù)題意P點(diǎn)運(yùn)動(dòng)的路程為2t,即BP=2t,然后根據(jù)線段的和差得出PC=BC﹣BP=6﹣2t;
(2) △BPD和△CQP全等 理由如下:當(dāng)t=1時(shí),BP=CQ=2×1=2厘米,根據(jù)線段的和差CP=BC﹣BP=6﹣2=4厘米,根據(jù)中點(diǎn)的定義得出BD=4厘米,從而得出PC=BD,然后利用SAS判斷出△BPD≌△CQP ;
(3)點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,故BP≠CQ ,又△BPD≌△CPQ,∠B=∠C,故BP=PC=3cm,CQ=BD=4cm,從而求出點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t的值,進(jìn)一步根據(jù)路程除以時(shí)間等于速度得出Q點(diǎn)的運(yùn)動(dòng)速度。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE⊥AC垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF 正確的個(gè)數(shù)是( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.

(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);

(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+32a15是某正數(shù)的兩個(gè)平方根,b的立方根是﹣2c算術(shù)平方根是其本身,求2a+b3c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)Mx,y)位于第四象限,且|x|=2,y2=9,則點(diǎn)M的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,∠A=140°,∠D=80°.

(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的平分線交于點(diǎn)E,試求出∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是( )
A.3a2b-a2b=2
B.單項(xiàng)式-x2的系數(shù)是-1
C.使式子(x+2)0有意義的x的取值范圍是x≠0
D.若分式 的值等于0,則a=±1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(a,-2)和B(3,b),當(dāng)滿足條件_______時(shí),點(diǎn)A和點(diǎn)B關(guān)于y軸對(duì)稱。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題

《九章算術(shù)》中有盈不足術(shù)的問(wèn)題,原文如下:今有共買羊,人出五,不足四十五;人出七,不足三.問(wèn)人數(shù)、羊價(jià)各幾何?題意是:若干人共同出資買羊,每人出5元,則差45元;每人出7元,則差3.求人數(shù)和羊價(jià)各是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案