精英家教網 > 初中數學 > 題目詳情

如圖,菱形ABCD的邊長為2,高AE平分BC.則菱形面積是________.


分析:高AE平分BC即可判定AB=AC,即可證明△ABC為等邊三角形,且△ABC≌△ADC,故菱形的面積為△ABC的面積的2倍,即可解題.
解答:∵高AE平分BC
∴AB=AC,即△ABC為等邊三角形,
∵AE=AB,
∴△ABC的面積為S=BC•AE=,
故菱形ABCD的面積為2
故答案為:2
點評:本題考查了菱形各邊長相等的性質,等邊三角形的判定和各邊長相等的性質,全等三角形面積的計算,本題中求△ABC的面積是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,菱形ABCD的邊長為2,∠ABC=45°,則點D的坐標為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結論正確的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,菱形ABCD的邊長為6且∠DAB=60°,以點A為原點、邊AB所在的直線為x軸且頂點D在第一象限建立平面直角坐標系.動點P從點D出發(fā)沿折線DCB向終點B以2單位/每秒的速度運動,同時動點Q從點A出發(fā)沿x軸負半軸以1單位/秒的速度運動,當點P到達終點時停止運動,運動時間為t,直線PQ交邊AD于點E.
(1)求出經過A、D、C三點的拋物線解析式;
(2)是否存在時刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
(3)設AE長為y,試求y與t之間的函數關系式;
(4)若F、G為DC邊上兩點,且點DF=FG=1,試在對角線DB上找一點M、拋物線ADC對稱軸上找一點N,使得四邊形FMNG周長最小并求出周長最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時從A點出發(fā),點P以1cm/秒的速度沿A→C→B的方向運動,點Q以2cm/秒的速度沿A→B→C→D的方向運動.當點Q運動到D點時,P、Q兩點同時停止運動.設P、Q運動的時間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點和線段是面積為0的三角形).
(1)當x=
8
8
秒時,P和Q相遇;
(2)當x=
(12-4
3
(12-4
3
秒時,△APQ是等腰直角三角形;
(3)當x=
32
3
32
3
秒時,△APQ是等邊三角形;
(4)求y關于x的函數關系式,并求y的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點O,求BD及AC的長.

查看答案和解析>>

同步練習冊答案