如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,∠BAD=∠B=30°
(1)求證:BD是⊙O的切線;
(2)請(qǐng)問:BC與BA有什么數(shù)量關(guān)系?寫出這個(gè)關(guān)系式,并說明理由.

【答案】分析:(1)連接OD,根據(jù)等腰三角形的性質(zhì)易得∠ODB=90°,即OD⊥DB即可得到BD是⊙O的切線
(2)根據(jù)等邊三角形的性質(zhì),可得∠DOC=60°,再根據(jù)含30°銳角的直角三角形的性質(zhì),可得OD=OB,進(jìn)而可得BC=AB.
解答:(1)證明:連接OD,
∵OD=OA,
∴∠OAD=∠ODA=30°,
∴∠DOB=60°;
又∵∠DBA=30°,
∴∠ODB=90°,
∵D為⊙O上一點(diǎn),
∴BD是⊙O的切線.

(2)解:BC=AB.理由如下:
連接CD;
∵OD=OC且∠DOB=60°,
∴△ODC為等邊三角形,
∴∠DOC=60°,
∴OD=OB;
∵OA=OD=OC,
∴BC=OB-OC=OC,
∴BC=AB.
點(diǎn)評(píng):本題考查常見的幾何題型,包括切線的判定,線段等量關(guān)系的證明,要求學(xué)生掌握常見的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,∠BAD=∠B=30°
(1)求證:BD是⊙O的切線;
(2)請(qǐng)問:BC與BA有什么數(shù)量關(guān)系?寫出這個(gè)關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)AB=3CB嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分8分)如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,
∠BAD=∠B=30°.

【小題1】(1)求證:BD是⊙O的切線;
【小題2】(2)AB=3CB嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011年山東省德州九年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題滿分8分)如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,
∠BAD=∠B=30°.

【小題1】(1)求證:BD是⊙O的切線;
【小題2】(2)AB=3CB嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011年山東省德州九年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題滿分8分)如圖,AC為⊙O直徑,B為AC延長(zhǎng)線上的一點(diǎn),BD交⊙O于點(diǎn)D,

∠BAD=∠B=30°.

1.(1)求證:BD是⊙O的切線;

2.(2)AB=3CB嗎?請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案