某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量W(千克)與銷售價x(元/千克)有如下關(guān)系:W=-x+60,設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式.
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?

解:(1)y=(-x+60)(x-20)=-x2+20x+60x-1200=-x2+80x-1200;

(2)由y=-x2+80x-1200得:
y=-(x2-80x+1200)
=-(x2-80x+402-402+1200)
=-[(x-40)2-400]
=-(x-40)2+400
當(dāng)x=40時,y有最大值,其最大值為400.
答:銷售價定為40元時,每天的銷售利潤最大,最大利潤是400元.
分析:(1)每天的銷售利潤y=每天的銷售量×每件產(chǎn)品的利潤;
(2)根據(jù)(1)得到的函數(shù)關(guān)系式求得相應(yīng)的最值問題即可.
點評:考查二次函數(shù)的應(yīng)用;得到每天的銷售利潤的關(guān)系式是解決本題的關(guān)鍵;利用配方法或公式法求得二次函數(shù)的最值問題是常用的解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、為了落實國務(wù)院副總理李克強同志到恩施考察時的指示精神,最近,州委州政府又出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(千克)與銷售價x(元/千克)有如下關(guān)系:w=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大最大利潤是多少?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、在召開的中央農(nóng)村工作會議中明確“把保持農(nóng)業(yè)農(nóng)村經(jīng)濟平穩(wěn)較快發(fā)展”作為今年首要任務(wù),為此省政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(千克)與銷售價x(元/千克 )有如下關(guān)系:w=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)用含x的代數(shù)式表示這種產(chǎn)品每天的銷售額;
(2)求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(4)如果物價部門規(guī)定這種產(chǎn)品的銷售價不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•營口)為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

最近,新鄉(xiāng)市政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加,某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,銷售時售價不低于成本價但又不能高于每千克25元,經(jīng)市場調(diào)查發(fā)現(xiàn)每天的銷售量y(千克)與所售單價x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖所示).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該農(nóng)戶每天所獲得的利潤為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時,w的值最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案