【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字1,2,3,4. 如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.
如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D;若第二次擲得2,就從D開始順時針連續(xù)跳2個邊長,落到圈B;…
設(shè)游戲者從圈A起跳.

(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?

【答案】
(1)解:∵共有4種等可能的結(jié)果,落回到圈A的只有1種情況,

∴落回到圈A的概率P1=


(2)解:列表得:

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(3,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

∵共有16種等可能的結(jié)果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),

∴最后落回到圈A的概率P2= = ,

∴她與嘉嘉落回到圈A的可能性一樣


【解析】(1)由共有4種等可能的結(jié)果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與最后落回到圈A的情況,再利用概率公式求解即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點H在平行四邊形ABCD的邊DC延長線上,連結(jié)AH分別交BC、BD于點E,F(xiàn).求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:
(1)2x2﹣x=1
(2)x2+4x+2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某超市從底樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC(精確到0.1米).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3SEDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點N,CN=1,CE= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點,AB=6,BC=8,則四邊形EFGH的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為( 。

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅要將邊長為4m和3m的平行四邊形框架固定,現(xiàn)有下列長度的木棒,在木棒的兩端釘上達(dá)到固定平行四邊形的目的,不符合要求的是(  )
A.2m
B.3m
C.4m
D.8m

查看答案和解析>>

同步練習(xí)冊答案