如圖,拋物線(xiàn)y=ax2+bx+c(a>0)交x軸于A、B兩點(diǎn),交y軸于C點(diǎn),A點(diǎn)在B點(diǎn)的左側(cè),已知B點(diǎn)坐標(biāo)為(8、0),tan∠ABC=,△ABC的面積為8。
(1)求:拋物線(xiàn)的解析式;
(2)若動(dòng)直線(xiàn)EF(EF∥x軸),從C點(diǎn)開(kāi)始,以每秒1個(gè)長(zhǎng)度單位的速度向x軸方向平移,與x軸重合時(shí)結(jié)束,并且分別交y軸、線(xiàn)段CB于E、F兩點(diǎn)。動(dòng)點(diǎn)P同時(shí)從B點(diǎn)出發(fā)在線(xiàn)段OB上以每秒2個(gè)長(zhǎng)度單位的速度向原點(diǎn)O運(yùn)動(dòng),運(yùn)動(dòng)到O點(diǎn)結(jié)束,連結(jié)FP,設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在t的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似,若存在,請(qǐng)求出t的值,若不存在,請(qǐng)說(shuō)明理由。
(3)在(2)的條件下,設(shè)AC與EF交于點(diǎn)M,求當(dāng)t為何值時(shí),M、P、A、F所圍成的圖形是平行四邊形、等腰梯形和等腰直角三角形。
解:(1)A(4,0),B(8,0),C(0,4)
;
(2)存在,
BA=4,AC=,BC=4,BP=2t,
,得
,化簡(jiǎn)
所以
(3)t=或t=2或t=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,直線(xiàn)y=ax+b與拋物線(xiàn)y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線(xiàn)y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀(guān)察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線(xiàn),與兩條拋物線(xiàn)分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線(xiàn)段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線(xiàn)上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線(xiàn)的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線(xiàn)y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線(xiàn)上,矩形面積為12,
(1)求該拋物線(xiàn)的對(duì)稱(chēng)軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線(xiàn)段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線(xiàn)解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線(xiàn)y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線(xiàn)的解析式;
(2)M是線(xiàn)段OB上一動(dòng)點(diǎn),N是線(xiàn)段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線(xiàn)與該拋物線(xiàn)交于點(diǎn)P,與線(xiàn)段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問(wèn):是否存在直線(xiàn)l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案