【題目】已知:如圖,在矩形ABCD中,AC是對角線.點P為矩形外一點且滿足AP=PC,AP⊥PC.PCAD于點N,連接DP,過點PPM⊥PDADM.

(1)若AP=,AB=BC,求矩形ABCD的面積;

(2)若CD=PM,求證:AC=AP+PN.

【答案】(1)3(2)AC=AP+PN

【解析】1∵AP⊥CPAPCP

∴△APC為等腰直角三角形

∵AP

∴AC.................1

∵ABBC

ABx,BC3x

Rt△ABC

x2+(3x)2=10

10x2=10

x=1.................3

.................4

2)延長AP,CD交于Q

∵∠1+∠CND=∠2+∠PNA=900

∠CND=∠ANP

∴∠1=∠2

∠3+∠5=∠4+∠5=900

∴∠3=∠4

∵APCP

∴△APM≌△CPD

∴DPPM

∵CDPM

∴CDPD

∴∠1∠3

∠1+∠Q∠3+∠690°

∵∠1∠3

∴∠Q=∠6

∴DQ=DP=CD

∴DCQ中點

∵AD⊥CQ

∴ACAQAP+PQ

∵∠1∠2

∠APN∠CPQ900

AP=CP ∴△APN≌△CPQ

∴PQPN

∴ACAP+PQAP+PN.................10

1)由已知條件知△APC為等腰直角三角形,即可求得AC的長,再利用勾股定理求得AB,BC的長,從而求得矩形ABCD的面積

2)延長AP,CD交于Q,通過角之間的等量關(guān)系,求得△APN≌△CPQ,得出PQPN,從而求得結(jié)論

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB∥CD, 若∠C=35,AB是∠FAD的平分線.

(1)求∠FAD的度數(shù);

(2)若∠ADB=110,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AD平分∠BAC,DEAB,DFAC,EF為垂足,則下列四個結(jié)論:①∠DEF=DFE;②AE=AF;③DA平分∠EDF;④EF垂直平分AD.其中正確的序號是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a-b=-7,c+d=2013,則(b+c)-(a-d)的值是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個口袋中有紅球、白球共10個,這些球除顏色外都相同.將口袋中的球攪拌均勻,從中隨機摸出一個球,記下它的顏色后再放回口袋中,不斷重復這一過程,共摸了100次球,發(fā)現(xiàn)有70次摸到紅球.請你估計這個口袋中有_____個白球.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:-5+|-3|=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象過點3,0)、(-10

1)求二次函數(shù)的解析式;

2)如圖,二次函數(shù)的圖象與軸交于點,二次函數(shù)圖象的對稱軸與直線交于點,求點的坐標;

3)在第一象限內(nèi)的拋物線上有一點,當的面積最大時,求點的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長是2EDC上一點,△ADE經(jīng)順時針旋轉(zhuǎn)后與△ABF重合.

1)指出旋轉(zhuǎn)的中心和旋轉(zhuǎn)的角度;

2)如果連結(jié)EF,那么△AEF是怎樣的三角形?請說明理由.

3已知點GBC上,且∠GAE=45°.

試說明GE=DE+BG.

EDC的中點,求BG的長.

查看答案和解析>>

同步練習冊答案