如圖,在△ABC中,AB=AC,∠BAC=40°,分別以AB,AC為邊作兩個(gè)等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù);
(2)求證:BD=CE.

【答案】分析:(1)根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理即可求得∠DBC的度數(shù);
(2)證明△ABD≌△ACE即可得到結(jié)論.
解答:(1)解:∵△ABD為等腰直角三角形,
∴∠DBA=45°.
又∵AB=AC,∠BAC=40°,
∴∠ABC=70°.
∴∠DBC=115°;

(2)證明:∵△ABD和△ACE均為等腰直角三角形,
∴∠BAD=∠CAE=90°,AB=AD,AC=AE.
又∵AB=AC,
∴AB=AD=AC=AE.
∴△ABD≌△ACE.
∴BD=CE.
點(diǎn)評(píng):本題考查了全等三角形的判定、三角形的內(nèi)角和定理、等腰三角形的判定;得到AB=AD=AC=AE是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案